Florida State University DigiNole Commons

Electronic Theses, Treatises and Dissertations

The Graduate School

February 2015

Gravity, Magnetic, and Geologic Constraints on the Raton Basin of Southern Colorado, USA

Yusuf Pehlivan Florida State University

Follow this and additional works at: http://diginole.lib.fsu.edu/etd

Recommended Citation

Pehlivan, Yusuf, "Gravity, Magnetic, and Geologic Constraints on the Raton Basin of Southern Colorado, USA" (2015). *Electronic Theses, Treatises and Dissertations*. Paper 9425.

This Thesis - Open Access is brought to you for free and open access by the The Graduate School at DigiNole Commons. It has been accepted for inclusion in Electronic Theses, Treatises and Dissertations by an authorized administrator of DigiNole Commons. For more information, please contact lib-ir@fsu.edu.

FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES

GRAVITY, MAGNETIC, AND GEOLOGIC CONSTRAINTS
ON THE RATON BASIN OF SOUTHERN COLORADO, USA

By YUSUF PEHLIVAN

A Thesis submitted to the
Department of Earth, Ocean, and Atmospheric Sciences
in partial fulfillment of the
requirements for the degree of
Master of Science

Degree Awarded: Spring Semester, 2015

Yusuf Pehlivan defended this thesis on February 4, 2015.					
The members of supervisory committee	were:				
	David Farris				
	Professor Directing Thesis				
	James F. Tull				
	Committee Member				
	Stephen Kish				
	Committee Member				
The Graduate School has verified and approved the above-named committee members, and					
	d in accordance with university requirements.				

To my mother, my siblings, and my fiancé

ACKNOWLEDGMENTS

So many people were involved directly or indirectly in this study. I wouldn't finish my thesis without their supports and encouragements. First and foremost, I express my sincerest gratefulness to my advisor Dr. David Farris, whose ceaseless efforts and patience helped me guide through this thesis. His comprehensive knowledge of the Raton Basin and his ambition toward field geology is admirable. I've learnt priceless knowledge both in the field and thesis preparation stages from him. I consider myself extremely lucky to have worked under his guidance.

I would also like to thank my committee members, Dr. Stephane Kish and Dr. James

Tull, for being my committee members and sharing their experiences with me. Their support and

feedbacks helped me in all the time of my study.

I would like to thank Turkish community in Tallahassee who share their graduate study experiences with me and support and encourage me any time during this study. I also would like to thank my friends for the inspiring conversations I have had with; my roommate Gokhan Tekin for his help, my classmate Ali Can Altintas for his encouragement and help, my Turkish friends, Umit Tokac, Ahmet Serhat Gozutok, Oktay Akpolat, Riza Memis and Dogan Guner for their support. I've learnt a lot from them.

I would like to send a special appreciation to the faculty members of the department of Geological Engineering at Dumlupinar University. In the first instance, I would like to thank Associated Professor Zeynal Abiddin Erguler and M. Serkan Akkiraz for their faith to me. They helped me as much as possible during my study. Professor Yasar Kibici, department chair, deserves heartfelt acknowledge for his encouragement and support.

I also would like to thank to the Turkish Petroleum Corporation for this scholarship and providing a great opportunity in U.S with full financial support.

Last but not least; I kept the greatest appreciation for my family members and my fiancé. I would like to thank my mom, my sisters and my brother who never lost their faith to me. Emine Cakir, my love, deserves so many thanks for her patient, support and eternal love during the last 2.5 years. It wouldn't have been possible to finish my thesis without her. As the end, I would like to send my pray and gratefulness to my dad. I know, he would have been proud of me if he had lived.

TABLE OF CONTENTS

LIST OF FIGURES	viii
LIST OF TABLES	x
ABSTRACT	xi
CHAPTER 1 INTRODUCTION	1
1.1 Overview	1
1.2 Geological Settings of the Raton Basin	2
1.2.1 Stratigraphic History of the Raton Basin	2
1.2.2 Basin Structure	7
1.3 Petrography of Igneous Rocks	11
CHAPTER 2 FIELD WORK AND DATA COMPILATION	13
2.1 Introduction of Field Work for Gravity Survey	13
2.1.1. Free-Air Correction	14
2.1.2. Simple Bouguer Gravity Correction	15
2.1.3. Bouguer Spherical Cap Correction	16
2.1.4. Terrain Correction	16
2.2. Introduction of Field Work for Magnetic Survey	20
2.2.1. Magnetic Susceptibility	21
CHAPTER 3 STRUCTURAL MODELLING	23
3.1 Introduction	23
3.2. Data Preparation	23
3.3. Orientation of the Cross-Sections	25
3.4. Building Cross-Sections	25

3.4.1. Gravity Cross-Sections	25
3.4.1.1. A-A' Cross-Section	27
3.4.1.2. B-B' Cross-Section	29
3.4.2. Magnetic Cross-Sections	31
3.4.2.1. C-C' Cross-Section	31
3.4.2.2. D-D' Cross-Section	32
CHAPTER 4 CONCLUSIONS	35
APPENDICES	37
A DENSITY AND MAGNETIC SUSCEPTIBILITY TABLES	37
B GRAVITY READINGS	41
C MAGNETIC READINGS	47
D ACTUAL GRAVITY MODELS	67
E GRAVMAG GRAVITY MODELS SAVE FILES	68
REFERENCES	76
RIOGRAPHICAL SKETCH	70

LIST OF FIGURES

1.1. Generalized geologic map of the Raton Basin showing the location and geologic boundaries of the study area. Derived from New Mexico Bureau Geology and Mineral Resource (2003) and Tweto (1979) (Hoffman and Brister, 2003)
1.2. Generalized stratigraphic column of Cretaceous and Tertiary rocks in the Raton Basin part of the Raton Basin-Sierra Grande Uplift Province. Wavy gray line marks erosional unconformity between Vermejo and Raton Formations (Cooper, 2006)
1.3. Structural cross sections perpendicular to the basin axis for both the northern and southern portions of the basin. 1/1000 vertical exaggeration (Cooper, 2006)
1.4. Generalized geologic cross section through the Southern Raton Basin (taken from the paper named by Freeman 3-24 well Nontributary determination Huerfano County, Colorado Raton Basin prepared by AMEC Environmental & Infrastructure, INC., 2012)
1.5. Structural map of the Raton Basin (Source S.S. Papadopulos & Associates, Inc. in conjunction with CGS, 2007) (taken from the paper named by Freeman 3-24 well Nontributary determination Huerfano County, Colorado Raton Basin prepared by AMEC Environmental & Infrastructure, INC., 2012)
1.6. Raton Basin Intrusion map (Cooper, 2006)
1.7. Dike with archway cut through it for road. Location is southwest of West Spanish Peak. View is westward
1.8. Porphyritic dike with a zone of plagioclase feldspar
2.1. Geologic map of the Raton basin showing the location of gravity stations. Modified form the state geologic map
2.2. Tools were used during our fieldwork. Trimble Pro XRT differential GPS receiver and Worden gravimeter
2.3. A) Free-Air anomaly plot. B) Simple Bouguer anomaly plot. C) Complete Bouguer anomaly plot
2.4. Google Earth image showing location of magnetic reading stations and the Spanish Peaks 21
2.5. Geometric G-846 proton magnetometer was used to collect magnetic anomaly readings during fieldwork
2.6. Terraplus K-10 Magnetic Susceptibility Meter was used to measure magnetic susceptibilities of rock samples
3.1. Regional Gravity Anomaly Map of the Raton Basin with the orientations of the cross-section A-A' and B-B' (White dots indicate our measurements)
3.2. Regional magnetic anomaly map of the Raton Basin showing magnetic reading stations (Black dots indicate our measurements)
3.3. Conseptual cross-section of the Raton Basin south of the proposed Freeman 3-24 Well (Source: SWEPI) (taken from the paper named by Freeman 3-24 well Nontributary determination Huerfano County, Colorado Raton Basin prepared by AMEC Environmental & Infrastructure, INC., 2012)indicate our measurements)

3.4. Gravity cross-section A-A'. Numbers in parentheses indicate density values used to build cross-sections	28
3.5. Gravity cross-section B-B'. Numbers in parentheses indicate density values used to build cross-sections	30
3.6. Orientation of C-C' cross section with magnetic stations (image was taken from Google Earth)	32
3.7. C-C' cross section. Total width of cross section is 700 m and total depth of the cross section is 500 m.	
3.8. Orientation of D-D' cross section with magnetic stations (image was taken from Google Earth)	33
3.9. D-D' cross section. Total width of cross section is 1400 m and total depth of the cross sect is 500 m	

LIST OF TABLES

Stratigraphic column for the Raton Basin (Cooper, 2006)	6
Density and magnetic susceptibility table of rock samples from the survey area	.17

ABSTRACT

The overall goal of this project is to better understand geologic characteristics of the Raton Basin. The Raton Basin is a Rocky Mountain foreland basin that contains Pennsylvanian through modern sedimentary rocks. The current structure of the basin is thought to have formed during the late Cretaceous through Tertiary Laramide orogeny. During this event, the basin was folded into a syncline, and steep reverse faults formed along the western edge of the basin in which Pre-Cambrian crystalline rocks of the Sangre de Cristo Range were partially thrust over the basin itself. In the Oligocene through present, the tectonic environment of the basin has been dominated by extension and extensional magmatism related to the Rio Grande Rift. A series of small plutonic bodies and more spatially extensive magmatic dikes intruded into the basin over this time interval.

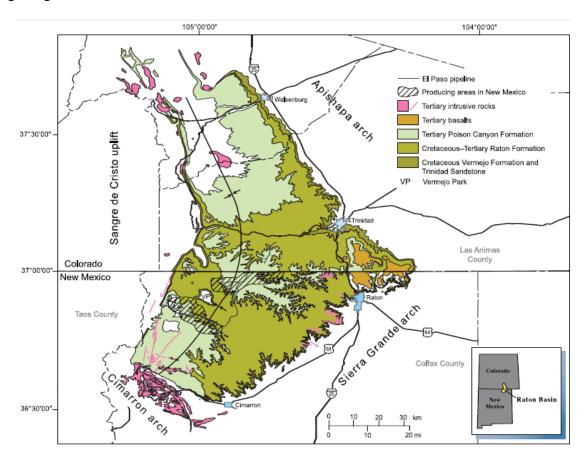
A high-resolution gravity transect with approximately 70 stations was conducted across the Raton Basin near the Spanish Peaks. This transect, coupled with existing data, indicate a 20 mgal negative Bouguer gravity anomaly in the northern part of the basin and a 55-60 mgal negative anomaly in the south. Gravity models of these observations indicate that the Raton Basin is approximately 3 km thick in the north and 5 km thick in the south. Also, the basin is structurally deformed into an asymmetric synform that is tightest in the central part of the basin.

High-resolution magnetic measurements were also taken to better understand the structure of the numerous dikes in the region. Magnetic susceptibility measurements were used to constrain induced magnetism of the igneous rocks. However, the total field strength of magnetic anomalies associated with the dikes indicates that normal and reversed polarity remnant magnetism is also significant.

CHAPTER 1

INTRODUCTION

1.1 Overview


The Raton Basin is a Laramide Rocky Mountains foreland basin but it distinctively has a complex structural and stratigraphical history. The basin has well-exposed sedimentary sequences ranging in age from Pennsylvanian up to current alluvial sediments (Cooper, 2006). Furthermore, the sedimentary rocks on the west limb of the basin dip steeply eastward and they are extensively deformed by thrust faults and folds. However, the sedimentary rocks on the east limb of the basin dip gently westward.

The Raton Basin extends from Southern Colfax County, New Mexico to Huerfano County, Colorado. It is 128 km long from north to south, and 80 km wide from west to east. The basin is constrained on the west by the Sangre de Cristo Mountains, on the east by Sierra Grande uplift. The northern limit is characterized by Wet Mountains and Apishapa arch, and the southern boundary is identified by Tucumcari Basin (Figure 1.1). However, the survey area includes just a part of the Raton Basin, near the Spanish Peaks, located in Southern Colorado.

In the Late Oligocene to Early Miocene the Raton Basin was extensively intruded by stocks, sills, and dikes. Many of them form mountains and hills, and dominate the landscape. Dikes are the remarkable example for radial dikes. The Spanish Peaks are the largest igneous masses in the basin, and they are classified as stocks.

Gravity and magnetic surveys in company with geologic observations have been performed to delineate the structural patterns of the basin. Quantitative models have been constituted using gravity and magnetic readings in the basin. These models will help to understand the geometry of the igneous rocks as regards the sedimentary rocks.

The goal of this thesis is to better understand geological characteristics of the Raton Basin by using geophysical techniques. In order to assess these relationships, structural patterns and geological features of the Raton Basin will be discussed.

Figure 1.1. Generalized geologic map of the Raton Basin showing the location and geologic boundaries of the study area. Derived from New Mexico Bureau Geology and Mineral Resource (2003) and Tweto (1979) (Hoffman and Brister, 2003).

1.2 Geological Settings of the Raton Basin

1.2.1 Stratigraphic History of the Raton Basin

The Raton basin formed during the Laramide orogeny, and is the southernmost of several major coal-bearing basins along the eastern margin of the Rocky Mountains. It contains sedimentary rocks as old as Devonian overlying Proterozoic basement rocks with Quaternary sediments at the surface (Table 1.1). Additionally, major sedimentary units in the basin are

Eocene – Oligocene in age. The sedimentary sequence exposed within the Raton Basin was deposited in association with regression of the Cretaceous Interior Seaway (Cooper, 2006). During the early Paleozoic time, "Continental Backbone" covered the most of the area of the Raton Basin. Continental Backbone is a term that is characterized by very little sedimentation. Then, Ancestral Rocky Mountains began to rise about 320 million years ago during Pennsylvanian time (Lindsey, 2010). However, Ancestral Rocky Mountains were worn down by erosion by the end of the Permian time (Lindsey, 2010). Present Sangre de Cristo range uplifted, and sediments accumulated into the central Colorado. The Pennsylvanian Sangre de Cristo formation corresponds to sedimentary fill that was formed due to erosion occurred after the Sangre de Cristo uplift (Lindsey, 2010). The Sangre de Cristo formation is composed of fluvial arkosic sandstones and conglomerates.

The Yeso formation, Glorieta sandstone and Bernal formation were deposited as a result of the seas returned, and covered the Raton Basin region after the Early Permian orogeny (Speer, 1976). The Yeso formation consists of shale and fine grained sandstone. The Glorieta sandstone is composed of grey, fine to medium grain, well-sorted marine sandstones. The Bernal formation which is lithologically similar to the Yeso formation consists of siltstone, shale and fine to coarse grained sandstone.

The Dockum group and Johnson Gap formation were deposited as terrestrial rocks of the late Triassic age. They were laid down as a blanket of sandstone and shale over the Raton Basin. The Dockum group consists of red sandstone and shale. The rocks of the late Triassic age are referred to the Dockum group in most of the Raton Basin. The Johnson Gap formation is composed of siliceous limestone conglomerate, shale, and grey and red sandstone.

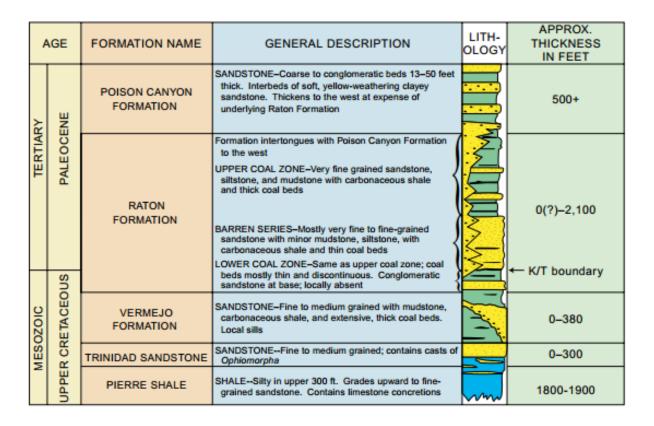
In late Jurassic time, a widespread blanket of shallow marine and overlying terrestrial deposits were laid down across the Raton Basin (Baltz, 1965). The Entrada sandstone and Morrison formation were deposited in Late Jurassic time. The Entrada sandstone is the basal upper Jurassic unit in almost the entire region. The Entrada composes of white to pink and red, fine to coarse grained sandstone fragments (Baltz, 1965). The Morrison formation consists of terrestrial sandstone and shale.

The Dakota sandstones are fine-grained and well-sorted as a result of a transgressing littoral environment (Speer, 1976). The Niobrara formation which is of marine origin overlies the Dakota sandstones. It consists of a basal limestone member and shale interbedded with thick, silty, calcareous mudstone. The marine Pierre shale conformably overlies the Niobrara formation. The Pierre shale intertongues with Trinidad sandstone. The upper part of the Pierre shale becomes sandy and forms a gradual transition zone. This transition zone marks the final regression of the Western Interior Seaway in the Raton basin.

The Western Interior Seaway controlled the depositional environment during the upper Cretaceous period. The Raton basin contains a nearly complete Cretaceous and Tertiary stratigraphic sequence of sedimentary rocks that include coal-bearing Vermejo and Raton formations (Close and Dutcher, 1990a) (Figure 1.2).

The upper Trinidad sandstone intertongues with and is overlain by the coal bearing Vermejo formation (Tremain, 1980). The Vermejo Formation consists of poorly sorted greywacke sands, gray, carbonaceous, silty shales, and thin- to thick-bedded, lenticular coal beds (Speer, 1976). Depositional environments of the sediments in the Vermejo formation include lagoonal, coastal swamp, and flood plain environments. It contains laterally extensive coal beds.

The Upper Cretaceous and Paleocene Raton formation lies unconformably above the Vermejo formation. Syndepositional clastic sediments shed off from the Sangre de Cristo Mountains, and they were deposited as the Raton basal conglomerate. The Raton basal conglomerate unit acts as a line which shows the erosional contact between the Raton formation and the Vermejo formation. The Raton formation also has a basal sandstone sequence that consists of fine-to-medium grained, fluvial sandstones. This basal unit is overlain by a coalbearing shale sequence, a thick, coarse-grained sandstone sequence and another coal-bearing shale sequence, totaling as much as 2,000 ft of strata in some areas of the basin (Speer, 1976).

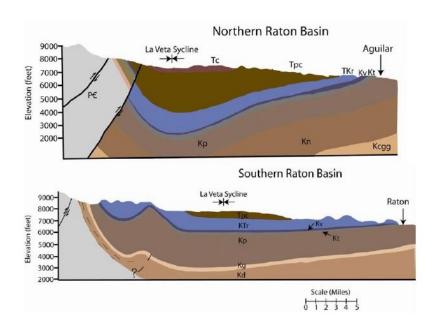

The Vermejo and Raton formations are two prominent coal-bearing units in the basin. However, the Raton formation contains more coal than the Vermejo formation. The underlying reason is that coal seams in the Vermejo formation are thinner and more discontinuous. The Vermejo formation was deposited in a lagoon environment whereas the Raton formation was deposited in a fluvial depositional environment. The Raton formation grades into the alluvial fan deposits of the Poison Canyon formation (Cooper, 2006).

Syn-Laramide orogenic sedimentation occurred during Tertiary time. The Sangre de Cristo uplift that began to rise in the Laramide orogeny supplied these synorogenic rocks (Woodward, 1976). Syn-Laramide deposition is recorded by the Paleocene Poison Canyon formation, Eocene Cuchara and Huerfano formations, and Oligocene Farisita formation. The Poison Canyon Formation consists of coarse, poorly-sorted, conglomeratic arkose; sandstones interbedded with thin yellow clay siltstones (Speer, 1976). The Poison Canyon formation is considered to have good petroleum potential due to the fact that the end of the deposition shows marine affinities. The Cuchara formation consists of red conglomeratic sandstones and thin variegated shale with abundant dikes and sills that are evidence of Rio Grande rift related

magmatism. The Huerfano formation composes of variegated shale and conglomeratic sandstone. Postorogenic rocks and sediments were accumulated in the basin during late Tertiary to Quaternary time (Woodward, 1976).

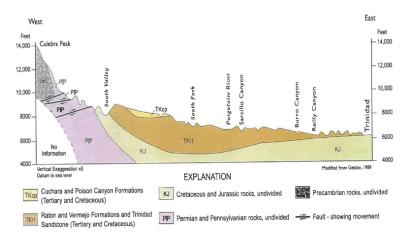
Table 1.1. Stratigraphic Column for the Raton Basin. (Cooper, 2006).

(Geologic Age	Formation	Thickness in Feet	Lithology	
Г	Quaternary	Recent	0-30	Alluvium and basalt flows	
Γ	Miocene	Devils Hole and igneous activity	25-1300	Tuff and volcanic conglomerate, igneous intrusives throughout section	
ı	Oligocene	Farisita	0-1200	Arkosic conglomerate	
Tortian	Eocene	Huerfano	0-2000	Variegated shale and conglomeratic sandstone	
		Cuchara	0-5000	Red conglomeratic sandstone with thin variegated shale	
	Paleocene	Poison Canyon	0-2500	Arkosic sandstone and conglomerate with thin shale	
Г	Late	Raton	0-1700	Thin coal beds, sandstone, shale and basal conglomerate	
l	Cretaceous	Vermejo	0-550	Sandstone, shale and coal	
		Trinidad Sandstone	0-300	Fine-grained beach sand	
		Pierre Shale	1600-2300	Grey marine shale, sandy shale and sandstone	
Į,		Niobrara	550-630	Marine shale and limestone Dark grey marine shale	
20	Early	Carlile Shale	155-235	Dark grey marine shale	
Ş	Early	Greenhorn Limestone	35-80	Thin-bedded limestone Dark grey marine shale	
ž	carry	Graneros Shale Dakota Sandstone	180-180	Grev massive sandstone	
Γ	Cretaceous	Purgatoire	185-385 100-150 100-150	Grey massive same score	
ı		Morrison		Continental shale, sandstone	
ı	Jurassic	Ralston, Todilto	100-600	Marine sediments, gypsum and	
ı		and Entrada	100-000	beach sandstone	
ı		Johnson Gap	0-700	Limestone conglomerates	
ı	Triassic	Dockum Group	0.4200	Red sandstone, calcareous shales	
L		Dockum Group	0-1200	and thin limestones	
Г		Bernal	0-150	Continental Sediments	
ı	Permian	Glorieta	0-200	Marine sandstones	
١.,	remian	Yeso	0-250	Red silt, shale and sandstone	
Paleozoic	Pennsylvanian	Sangre de Cristo	250-5400	Variegated shales, arkoes, conglomerates and thin marine limestones	
	Precambrian	Precambrian	Basement	Mafic gneiss, quartzite, granite and granite gneiss	


Figure 1.2. Generalized stratigraphic column of Cretaceous and Tertiary rocks in the Raton Basin part of the Raton Basin–Sierra Grande Uplift Province. Wavy gray line marks erosional unconformity between Vermejo and Raton Formations. (Cooper, 2006).

1.2.2 Basin Structure

The Laramide orogeny in the region began about 67.5 Ma and ended about 50 Ma (Tweto, 1975). The basin is characterized by a syncline. The La Veta syncline substantially plays an important role in the formation of the basin (Figure 1.3). The syncline axis roughly cuts in the middle of the basin. The Sangre de Cristo uplift occurred during the Laramide orogeny, as high angle limited over-thrusts of primarily sedimentary material were thrust up and over the Raton Basin (Woodward, 1987). Overturned sedimentary strata appear at the western edge of the basin. The La Veta syncline represents the axial trace of the basin. The Greenhorn Anticline and Del Carbon Syncline that are located in the northern portion of the Raton Basin show increase the strength of structural complexity (Figure 1.5). It lies parallel to the Sangre de Cristo Mountains.


The western flank of the basin dips steeply and has been affected by substantial thrust faults. Sedimentary rocks along the western edge of the basin are extensively deformed by steep dipping thrust faults and several major folds (Hemborg, 1998). However, the eastern flank of the basin dips gently to the west. Generalized geologic cross section through the Southern Raton Basin is given in Figure 1.4 to demonstrate the general shape of the basin.

Igneous activity has occurred within and adjacent to the basin since Miocene times with ages ranging from approximately 26 to 21 million years until present (Penn, 1995; Miggins, 2002; Lee, 2005). This igneous activity mostly occurred as intrusions such as stocks, laccoliths, dikes and sills (Figure 1.6). Igneous rocks types are various in the basin such as granites, syenites, diorites and gabbros (Johnson, 1968). All types of igneous rocks in the basin dominate the topography. However, various types of dikes and sills shape the current basin topography.

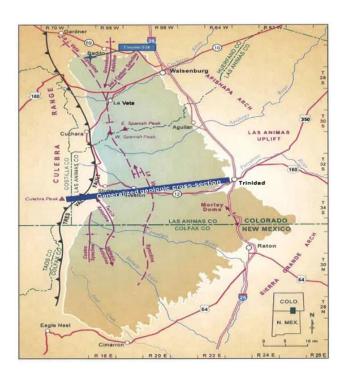


Figure 1.3. Structural cross sections perpendicular to the basin axis for both the northern and southern portions of the basin. 1/1000 vertical exaggeration (Cooper, 2006).

Figure 1.4. Generalized geologic cross section through the Southern Raton Basin (taken from the paper named by Freeman 3-24 well Nontributary determination Huerfano County, Colorado Raton Basin prepared by AMEC Environmental & Infrastructure, INC., 2012).

Figure 1.5. Structural map of the Raton Basin (Source S.S. Papadopulos & Associates, Inc. in conjunction with CGS, 2007) (taken from the paper named by Freeman 3-24 well Nontributary determination Huerfano County, Colorado Raton Basin prepared by AMEC Environmental & Infrastructure, INC., 2012).

The Spanish Peaks are the best known and prominent intrusions in the Raton Basin (Johnson, 1968). They are characterized by a radial dike swarm, and classified as stocks.

Numerous sills and characteristic dikes are associated with the Spanish Peaks.

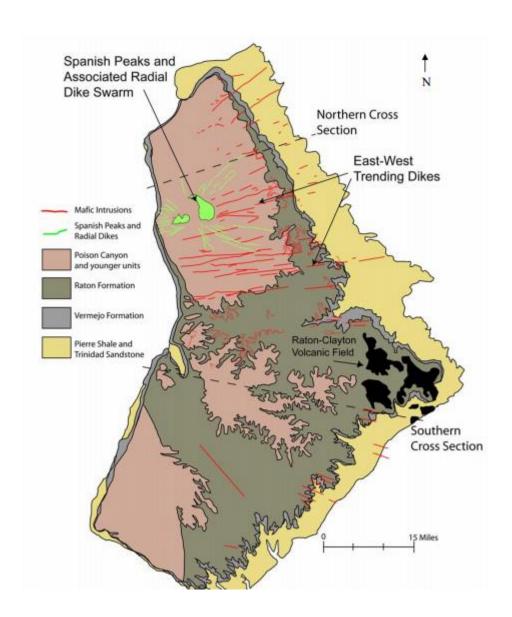



Figure 1.6. Raton Basin Intrusion map (Cooper, 2006).

1.3 Petrography of Igneous Rocks

In the Raton Basin most igneous rocks were emplaced during late Oligocene to early Miocene time and intruded the sedimentary rocks of the basin. The igneous bodies do not exhibit significant structural deformation because they were emplaced after the Raton basin had been structurally developed and the Laramide thrusting of the Sangre de Cristo Mountains had subsided (Figure 1.7).

Figure 1.7. Dike with archway cut through it for road. Location is southwest of West Spanish Peak. View is westward.

The igneous rocks in the Raton basin region construct a continuous transition from granite to gabbro. These rocks are chemically in range from acidic to ultrabasic and from oversaturated to undersaturated types. They are also mafic to felsic (Johnson, 1968).

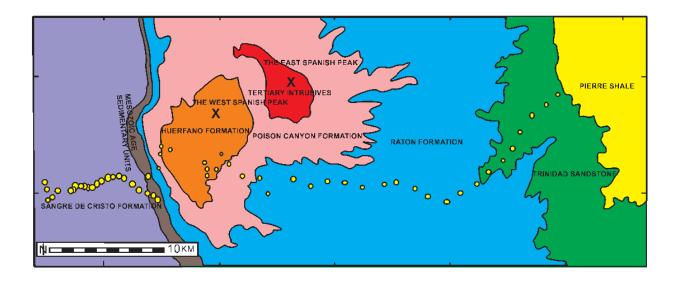
The sequence of intrusions in the Raton Basin generally seems to form silicic to mafic.

Therefore, the oldest intrusive is the East Spanish Peak and mafic dikes and sills are the youngest

intrusive features in the region. Late Oligocene to Early Miocene age intrusive features around the Spanish Peaks cause contact metamorphic rocks to form (Johnson, 1968). Bleached sandstone and baked shale are locally seen around the Spanish Peaks where dikes and sills come up. However, next to the largest intrusive bodies, contact metamorphism is very prominent. Conglomerate, sandstone, and shale beds have been altered to conglomeratic quartzite, hornfels, and slate (Johnson, 1961). Petrographically, the igneous rocks have variety which shows a continuous gradation from granite to gabbro. These include phaneritic, aphanitic, and porphyritic varieties of granite, granodiorite, syenite, syenodiorite, diorite, syenogabbro, and gabbro as well as lamphophyric varieties of syenite, syenodiorite, diorite, syenogabbro, and gabbro (Johnson, 1961) (Figure 1.8).

Figure 1.8. Porphyritic dike with a zone of plagioclase feldspar.

CHAPTER 2


FIELD WORK DESCRIPTION AND DATA COMPILATION

2.1 Introduction of Field Work for Gravity Survey

The purpose of the gravity survey is to reveal geologic and structural characteristics of the Raton Basin. In this study, a gravity survey was performed using a Worden gravimeter to better understand structural geometry of the Raton basin and the distribution of intrusive rocks. The survey consists of a transect perpendicular to the strike of the Raton basin composed of 77 measurements. Locations of stations are shown on figure 2.1. There is a high resolution segment across the main thrust and a lower resolution segment cross the West Spanish Peak and extends across the basin. Station elevations were measured by Trimble Pro XRT differential GPS receiver. (Figure 2.2) Elevation precision is mostly lower than \pm 10 cm. EGM96 was used for the vertical datum.

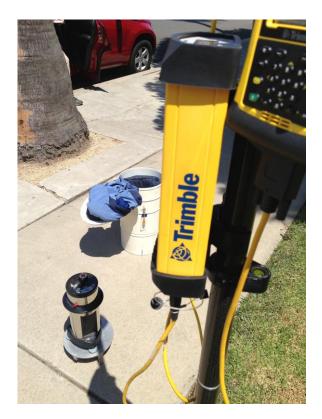
Observed gravity is affected by tidal effects, elevation and instrument drift as a function of time at a given location. Corrections should be applied on gravity data to get rid of these effects.

In order for a gravity survey to be interpreted in terms of geology, so we must dismiss undesirable elevation effect, which is known as the "free-air" effect. Free-air effect has been taken into account during calculation of gravity anomalies. Gravimeters are very sensitive instruments and can drift gradually with time. Repeated readings at a same location are needed to address this issue to obtain accurate data. A base station was designated and readings at this location were taken twice in a day to account for instrument drift. Repeated measurements indicate precision of the gravity values is approximately \pm 0.2 mGal. Based on tie-ins to previously measured stations, the accuracy of the absolute gravity measurements is \pm 1 mGal.

Figure 2.1. Geologic map of the Raton basin showing the location of gravity stations. Modified form the state geologic map.

Rock samples were collected for laboratory works. Rock densities and magnetic susceptibility were determined in the laboratory and used to constrain gravity and magnetic models. The way to measure the density of a rock sample is to weight the sample in the air and then submerged water. If ω a is the weight of the sample in air and ω w is its weight when immersed in water, then its density is:

$$\rho = \omega a /(\omega a - \omega w)$$


The water is assuming as pure H_2O at 25C°. Density table is shown in table 2.1 (Appendix A).

2.1.1. Free-Air Correction

The free-air correction accounts for gravity variations caused by elevation differences in the observation locations. Sea level is commonly considered as the reference level because gravity decreases 0.3086 mGal/m. This correction must be added for stations above sea level.

2.1.2. Simple Bouguer Gravity Correction

The Simple Bouguer correction accounts for excess mass underlying observation points where elevation of an observation point is higher than elevation of the datum. The Simple Bouguer correction provides to discard slab effect on the Bouguer anomaly. It is applied as a positive value added to the Bouguer anomaly.

Figure 2.2. Tools were used during our fieldwork. Trimble Pro XRT differential GPS receiver and Worden gravimeter.

Simple Bouguer anomaly is the anomaly caused by subsurface density contrast. It is calculated by extraction of calculated gravity form observed gravity. There are three main components such as latitude effect, free-air effect, and Bouguer effect for measuring calculated gravity. Formula of the calculated gravity is:

 $\delta_{calculated}$: $\delta_{lat} + \delta_{fe} + \delta_{bouguer}$

Hence, the Simple Bouguer gravity anomaly is:

$$\delta_{BA}:\delta_{observed}$$
 - $\delta_{calculated}$

The average crustal density of 2.67 g/cm³ was considered to compute the Bouguer correction. Using an average crustal density of 2.67 g/cm³ is the common practice for calculating Bouguer gravity anomaly.

2.1.3. Bouguer Spherical Cap Correction

The Bouguer spherical cap models a simple mass from the ellipsoid to the station height. The density of the mass normally is the average continental density of 2.67 g/cm3 (Hinze, 2003). Bouguer slab correction was used in older methods for reducing gravity data. However, Bouguer slab correction is created depend on a flat Earth model (Holom and Oldow, 2007). The Bouguer spherical cap correction clarifies errors caused by the curvature of Earth (Hildebrand et al., 2002). Bouguer spherical cap correction was applied to the gravity data.

2.1.4. Terrain Correction

The terrain correction accounts for variation of topographic mass. The terrain correction is applied during a procedure of computing the gravity data. It is necessary and important in dealing with gravity data. Regardless of topography, mountain or valley, the terrain correction is positive. The terrain correction formula is given by:

$$\delta_t = \delta_{obs} + \delta_{lat} + 0.3086h - 0.04193rh + TC \text{ (mGal)}$$

TC is the value of the computed Terrain correction.

Terrain correction for this study is necessary due to the large elevation change. Elevation of the survey area is ranges from 2000 to 3300 meters and this large change in altitude can significantly alter observed gravity anomalies. Therefore, the first thing to do before

interpretation of the new gravity data is amendment on Bouguer anomaly using interpolated terrain correction. Interpolation method that was used to determine Terrain corrections is based on elevation values on a grid of latitude and longitude.

Table 2.1 Density and magnetic susceptibility table of collected rock samples from the survey area.

				Magnetic
			Density	Susceptibility
Station	Sample	Formation	(g/cm³)	(*10^-3 s.i)
13RB340A	Fine Grained Sandstone	Cuchara Formation	2.27	0.047
13RB340B	Coarse-Grained Sandstone	Cuchara Formation	2.23	0.045
13RB341	Fine-Grained Sandstone	Cuchara Formation	2.34	13.3
13RB342	Porphyritic Dike	Granodiorite	2.57	12.1
13RB343	Porphyritic Dike	Granodiorite	2.81	21.8
		Poison Canyon		
13RB344A	Conglomerate	Formation	2.48	0.375
13RB344B	Porphyritic Dike	Syenogabro	2.72	25.4
13RB346A	Sill	Syenodiorite	2.53	15.9
		Poison Canyon		
13RB346B	Black Shale	Formation	1.66	0.092
13RB347A	Siltstone	Vermejo Formation	2.17	0.093
13RB347B	Shale	Vermejo Formation	2.52	0.247
13RB347C	Sandstone	Vermejo Formation	2.48	0.154
13RB349A	Porphyritic Dike	Granodiorite	2.67	11.4
13RB349B	Black Shale	Cuchara Formation	2.55	0.229
13RB349C	Shale	Cuchara Formation	2.44	0.571
13RB381A	Sandstone	Raton Formation	2.26	0.478
13RB381B	Coal	Raton Formation	1.63	0.047
13RB381C	Siltstone	Raton Formation	2.32	0.171
		Sangre de Cristo		
13RB392A	Fine-Grained Sandstone	Formation	2.8	0.143
		Sangre de Cristo		
13RB392B	Coarse-Grained Sandstone	Formation	2.44	0.225
		Sangre de Cristo		
13RB392C	Coarse-Grained Sandstone	Formation	2.48	0.135
13RB401	A metamorphic unit	Gneiss	2.52	0.212
13RB418	Porphyritic Dike	Syenodiorite	2.67	11.8

Table 2.1 continued.

			Density	Magnetic Susceptibility
Station	Sample	Formation	(g/cm³)	(*10^-3 s.i)
	Red and Green variegated		(8) 3111 /	(== = = = = = = = = = = = = = = = = =
14R07C	siltstone	Morrison Formation	2.19	0.082
14R06A	Fine-Grained Sandstone	Dakota Sandstone	2.34	0.071
	Grey Coarse-Grained	Poison Canyon		
14R04A	Sandstone	Formation	2.41	1.71
14R17A	A Metamorphic Cobble	Gneiss	2.69	0.246
		Sangre de Cristo		
14R11B	Fine Grained Sandstone	Formation	2.39	0.324
14R07A	Greenish Sandstone	Morrison Formation	2.47	0.154
	Coarse-Grained Reddish			
14R02A	Sandstone	Cuchara Formation	2.38	0.103
14R08A	Coarse-Grained Sandstone	Dockum Group	2.44	0.202
	Red and Orange Fine-			
14R10A	Grained Sandstone	Entrada Sandstone	2.35	0.656
14R07B	Chert/Mudstone	Morrison Formation	2.14	0.75
		Poison Canyon		
14R03A	Grey Sandstone	Formation	2.45	14.7
	Coarse-Grained Maroon			
14R09A	Sandstone	Dockum Group	2.39	0.851
		Sangre de Cristo		
14R11A	Coarse-Grained Sandstone	Formation	2.51	0.281
14R03B	Porphyritic Dike	Granite	2.69	7.96
14R05A	Grey Shale	Pierre Shale	2.38	2.75
14R01A	Sandstone	Cuchara Formation	2.31	0.191
14R01B	Porphyritic Dike	Andesite	2.65	7.29
	A Cobble of Foliated			
14R16A	Quartzite	Quartzite	2.72	0.159

Deviation on data base points may occur. Therefore, each point should be determined by interpolation of the surrounding data base points. Interpolated terrain correction was added to Bouguer gravity anomaly. Sum of the interpolated terrain corrections and Bouguer gravity anomalies are concluded by complete Bouguer anomaly. Completed Bouguer anomaly was used to gravity interpretations. Differences between interpolated Bouguer anomaly plot and simple Bouguer anomaly plot are shown in figure 2.3.

This study intends to gain valuable interpretations about geologic features of the basin. Hence, pre-existed gravity data was used to produce another cross-section to compare with our gravity anomaly profile. This cross-section was considered to cut our gravity anomaly profile and provide us more data for understanding subsurface geology of the survey area. Structural models were built by cross-sections. These models are the foremost components of the study and will be discussed following chapters.

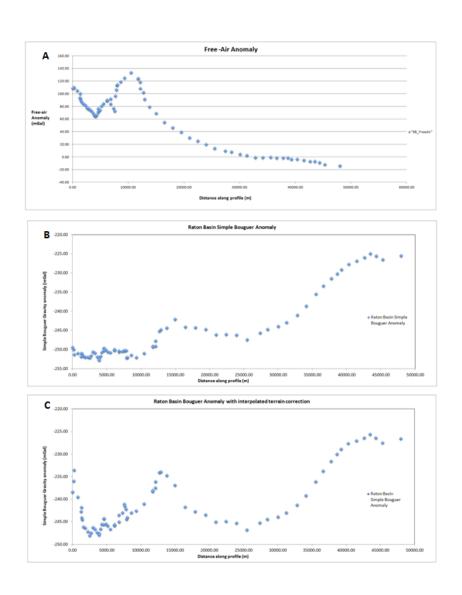


Figure 2.3. A) Free-Air anomaly. B) Simple Bouguer anomaly. C) Complete Bouguer anomaly.

2.2. Introduction of Field Work for Magnetic Survey

Magnetic anomaly surveys show us variations in the Earth's magnetic field caused by variations in the induced and remnant magnetism components of the rocks. In this study, the main purpose of the magnetic survey is to detect dikes. Magnetic survey was performed by Geometrics G-846 proton magnetometer. The survey, representing 414 measurements within every 10 feet, locations of stations are shown on figure 2.3.

Geometric G-846 proton magnetometer is a portable instrument and usually used for ground magnetic measurements (Figure 2.4). Its precision is 1-5 nT. It is convenient to measure magnetic signatures along parallel lines cover the survey area. The magnetometer can be operated by single person. However, another person may be needed for surveying or grid layout (Mariita, 2007). Man-made structures create intense magnetic fields on the survey point and cause a problem in magnetic surveys. All kind of ferrous metals around a magnetometer can easily deflect the data. The compass and belt buckles should be removed while a magnetic survey occurs (Mariita, 2007).

Data recording methods vary according to the purpose of a survey. Our method includes recording 3-5 readings, and averaging the result. Then, another five readings are taken ten feet away, and averaging the result. Some important features recorded in the field book for such as station numbers, time, weather and man-made structures after each reading. Anomalies were calculated based on differences from IGRF11 values as calculated from the NDAA (NGDC) online calculator.

After all corrections have been made, magnetic survey data are usually displayed as individual profiles or as contour maps. Identification of anomalies caused by man-made structures such as railroads, pipelines, and bridges should be shown on the maps.

Figure 2.4. Google Earth image showing location of magnetic reading stations and the Spanish Peaks.

Figure 2.5. Geometric G-846 proton magnetometer was used to collect magnetic anomaly readings during fieldwork.

2.2.1. Magnetic Susceptibility

Magnetic anomalies are the result of variations in magnetic susceptibility and remnant magnetism of Earth materials. In order to constrain our models we have measured magnetic susceptibility of the Raton basin rocks.

We used the Terraplus K-10 Magnetic Susceptibility Meter to measure magnetic susceptibility values of our rock samples (Figure 2.5). Three different measurements were taken for accurate measurement, and errors calculated base on the standard deviations. Magnetic susceptibility measurements is shown in table 2.1 (Appendix A).

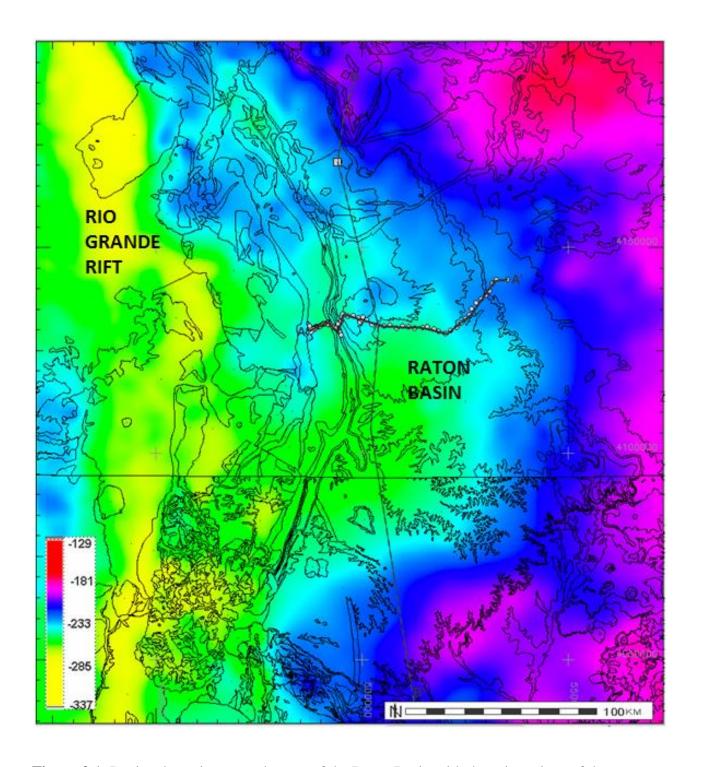
Presence of rocks with either high magnetic susceptibility or high remnant magnetism in the subsurface possibly causes for magnetic highs. Igneous and metamorphic rocks generally have high magnetic susceptibility. Sedimentary rocks have lower magnetic susceptibility compared with igneous and metamorphic rocks (Mariita, 2007). Magnetic surveys often are undertaken to better identify subsurface geologic structures.

Figure 2.6. Terraplus K-10 Magnetic Susceptibility Meter was used to measure magnetic susceptibilities of rock samples.

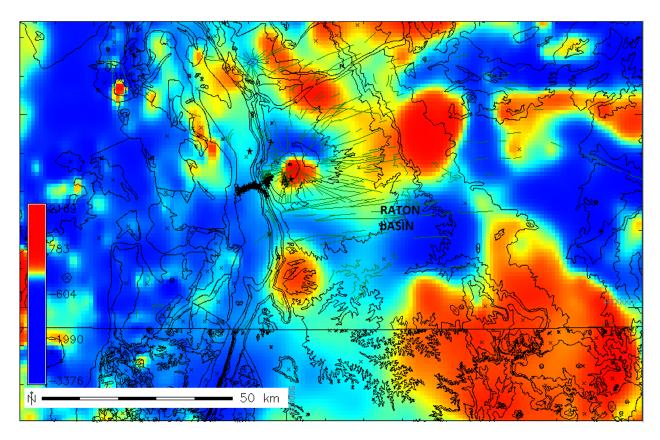
CHAPTER 3

STRUCTURAL MODELLING

3.1 Introduction


Gravity and magnetic data has been gathered across the Raton basin. Gravity modeling has done to obtain more knowledge about geologic features of the basin while magnetic modeling has done for the dikes. All corrections on gravity data were applied. Density values of rocks samples were measured. Also, magnetic susceptibility measurements have been accomplished. Consequently, all relevant and reliable geologic information that can help to improve the study was collected from previous studies.

A key part of understanding the geologic implications of potential filed data is to build quantitative models. Gravity and magnetic models has not been built only to understand geology of the basin but also provide basic knowledge about tectonic frameworks of the Raton basin.


The GRAVMAG software was used to produce 2D gravity and magnetic models. GRAVMAG calculates the gravity and magnetic signature of north sided polygons. These polygons can be graphically shaped into potential geologic configurations and compared to observational data. The 2-D models project the polygons to an infinite distance perpendicular from the profile.

3.2. Data Preparation

Our collected data was merged with pre-existing data from the University of Texas, El Paso National Gravity and Magnetic database. The resulting data was gridded to produce the map below. Gravity stations and geologic features of the basin such as faults and dikes are shown on Simple Bouguer gravity anomaly map (Figure 3.1). Furthermore, magnetic readings are represented by regional magnetic anomaly map (Figure 3.2).

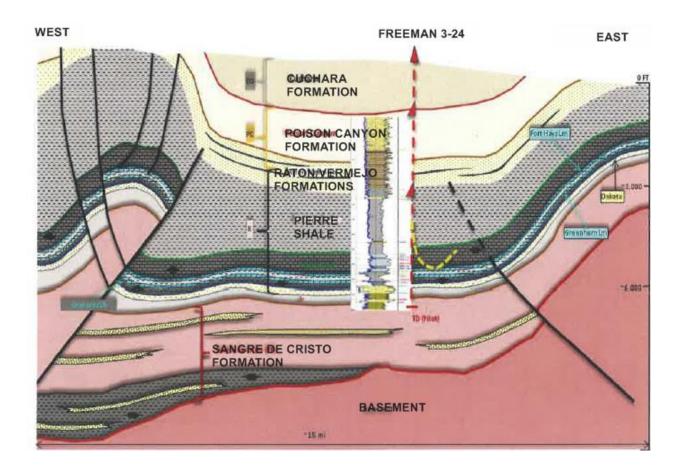
Figure 3.1. Regional gravity anomaly map of the Raton Basin with the orientations of the cross-section A-A'and B-B' (White dots indicate our measurements).

Figure 3.2. Regional magnetic anomaly map of the Raton Basin showing magnetic reading stations (Black dots indicate our measurements).

3.3. Orientation of the Cross-Sections

Orientations of the gravity cross-sections were different from orientation of the magnetic cross-sections. Orientations of magnetic cross-sections built based on distribution of dikes and topographic conditions. Distinctively, gravity sections were perpendicular to each other.

3.4. Building Cross-Sections


3.4.1. Gravity Cross-Sections

Quantitative 2-D gravity models of the Raton Basin were produced in order to better understand its geology. These models are constrained by observational gravity data. GRAVMAG was used to build gravity models. As mentioned in the previous chapter, orientations of cross sections (A-A' and B-B') were determined as the first step. A-A' profile is perpendicular to the

basin while B-B' profile parallel to basin strike. A-A' is along the gravity transect where B-B' is constrained by the Freeman 3-24 drill core. Freeman 3-4 drill provides information about basin depth and geologic sequence. According to Freeman 3-24 drill core, thickness of sedimentary units is as deep as 3 km. A syncline axis coincides with the drilling point. A-A' and B-B' crosssections are intersected. At that point, the two models have identical geometry. At the intersection point, the depth of the sedimentary units is almost 3 km for each models. Furthermore, each models cut the Raton formation at the intersection point. Rock densities measured in laboratory were imported to the GRAVMAG for gravity modeling. Three different density values were taken into account as average density values for three types of rocks. Density value for basement rocks was considered as the average. Density value for intrusive rocks was taken 0.1 g/cm³ higher than density value of basement rocks. Also, density value for sedimentary rocks was accepted 0.4 g/cm³ lower than density value of basement rocks. Existing geologic observations and drill core data (Freeman 3-24) was helpful to build initial model geometries. As the final step, bodies that correspond to geologic rock units were added. Models were ready to be built and interpretation of geologic characteristics of the basin.

A-A' cross-section follows the gravity transect and is approximately 48 km in length. The depth of the cross-section is 8 km. B-B' cross-section is parallel to basin strike and intersect the A-A' cross-section. The drill core data taken from Freeman 3-24 well was taken into account to assume prospective geometry and estimated depth of the basin for B-B' cross-section (Figure 3.3). As I mentioned before, GRAVMAG works based on density differences between bodies while building gravity models. Density differences are considered same for all models. Density value is 2.8 g/cm³ for igneous rocks, 2.3 g/cm³ for sedimentary rocks and 2.7 g/cm³ for basement rocks. Differences between them were used for modeling. Table 2.1 shows rock densities.

Overall range of the gravity readings are between -224 to -246 mGal. However, a correction of +200 mGal to all gravity readings to remove the effect of thickened crust. The goal of the model is to better understand upper crustal Raton Basin and not overall crustal thickening due to the Laramide orogeny.

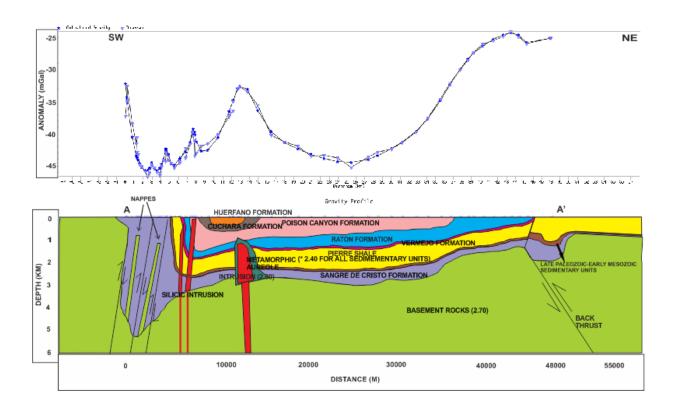


Figure 3.3. Conseptual cross-section of the Raton Basin south of the proposed Freeman 3-24 Well (Source: SWEPI) (taken from the paper named by Freeman 3-24 well Nontributary determination Huerfano County, Colorado Raton Basin prepared by AMEC Environmental & Infrastructure, INC., 2012).

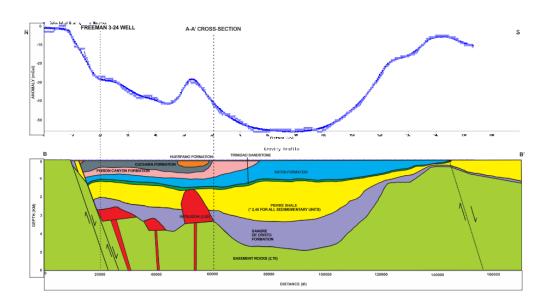
3.4.1.1. A-A' Cross-Section

Laramide structure in the region is characterized by west to east compression and thrusting (Cordell and Keller, 1984). So, it is evident on the cross-section that a bunch of thrust

faults on the western limit of the cross-section and one back-thrust on the eastern boundary of the cross-section are squeezed the sedimentary units. Previous geologic studies pointed out long north-south trending thrust faults might lie mainly to the west of the region. Whiskey Creek, Cuchara Pass, and Coal Creek Faults could be those thrust faults that were mentioned in previous studies (Johnson, 1968). Nappes appear on the western side due to thrusting. Thrust faults on the west trigger sedimentary rocks along the western edge of the basin to be extensively deformed because it has a steep eastward dip of the sedimentary rocks on the west limb.

Figure 3.4. Gravity cross-section A-A'. Numbers in parentheses indicate density values used to build cross-sections.

Pennsylvanian age Sangre de Cristo Formation is the basal sedimentary unit in the survey area, and it comes out along the western side of the cross-section due to thrusting. It is


overlain by late Mesozoic – early Cretaceous thin section of sedimentary units. Pierre shale covers them. Its thickness is 1.8-2.2 km. It is conformably overlain by late Cretaceous Trinidad sandstone and Vermejo formation. Both sedimentary units are cut by back thrust on the east of the cross-section. Late Cretaceous Raton formation overlies to the Vermejo formation. Thickness of the Raton formation is 1.3-1.8 km. The Raton formation is conformably overlain by Paleocene Poison Canyon formation. Eocene age Cuchara formation overlies the Poison canyon formation. At the top, Eocene age Huerfano formation covers the Cuchara formation. Its thickness is 300-400 m. Furthermore, there are sharp ascents between 6th to 18th km on the profile. They correspond to presence of intrusive rocks. The westernmost thin intrusions are silicic intrusions. Moreover, metamorphic aureole zone covers the easternmost intrusion. Metamorphic aureole indicates that contact metamorphism occurred in that area. After that point, the gravity anomalies start to decrease and the basin correspondingly deepens. The deepest portion of the basin after intrusion is almost 3 km. Thickness of Laramide orogenic sediments is 1.5-2 km.

3.4.1.2. B-B' Cross-Section

This cross section intersects the Freeman 3-24 well and cut through the A-A' cross-section (Figure 3.5). The reason of the orientation is to combine gravity and well log data. Geologic information was derived from Freeman 3-24 well, and applied to the B-B' cross-section. The length of the model is 170 km. The depth of the basin is taken 6 km same as the previous model. The purpose of this model is to gain much more understanding about geological and geophysical properties of the Raton Basin (Figure 3.6).

Two thrust faults on the northern limit of the basin and another normal fault at the southern edge of the basin are compressed the sedimentary units. Intersection point of the Freeman 3-24 well is located at 20th km. Intersection point correspond to an anticline axis..

According to the Freeman 3-24 well, Pennsylvanian age Sangre de Cristo formation is the basal sedimentary unit of the basin. The depth of Sangre de Cristo formation is 2.7 km at the intersection point of the Freeman 3-24 well. Cretaceous age Pierre shale comes out on the top of the Sangre de Cristo formation. The Sangre de Cristo formation and Pierre shale are significantly thicker in the southern part of the basin. The Trinidad sandstone overlies the Pierre shale. The Trinidad sandstone is a thin layer of fine-grained sandstone that is cut by a normal fault on the south. Late Cretaceous Raton formation overlies the Trinidad sandstone. Paleocene age Poison canyon formation overlies the Raton formation, and its depth is 1.8 – 2 km at the intersection of Freeman 3-24 well. The Poison Canyon formation is conformably overlain by Eocene Cuchara formation. The Cuchara formation appears just on the north of A-A' cross-section. Its depth is approximately 700-800 m. Eocene age Huerfano formation is at the top. Its depth is 300-400m. The maximum depth of the sedimentary units is 4.6- 5 km. Igneous rocks intruded sedimentary rocks between intersections of Freeman 3-24 well and A-A' cross-section.

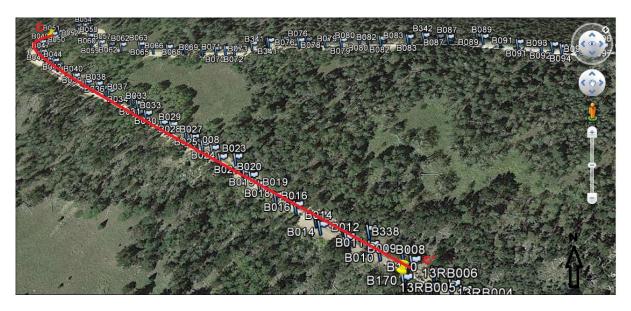
Figure 3.5. Gravity cross-section B-B'. Numbers in parentheses indicate density values used to build cross-sections.

3.4.2. Magnetic Cross-Sections

Magnetic anomalies collected in the field and magnetic susceptibilities of rock samples were used to produce the below magnetic models. The GRAVMAG program was used to build magnetic models. First, orientations of cross sections were designated. Two different profiles (C-C' and D-D') were taken from the whole profile. Second, magnetic anomaly readings and magnetic susceptibility values were imported to the GRAVMAG for magnetic modeling.

Magnetic susceptibility meter measured magnetic susceptibilities of rock samples as the s.i unit. We had to convert the unit of susceptibility from s.i to cgs in order to use GRAVMAG for magnetic modeling. Converting formula are stated below:

$$1 \text{ cgs} = 1 \text{ s.i}/4\pi$$

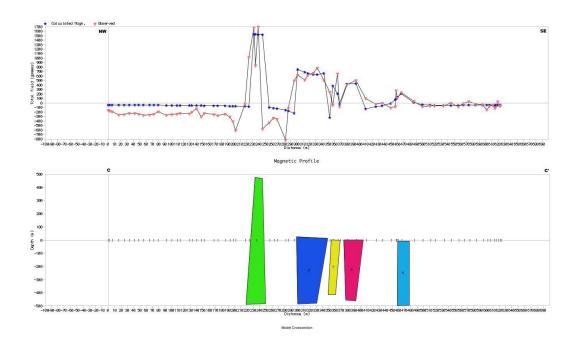

After converting magnetic susceptibility units, we used an average magnetic susceptibility value for all igneous rocks as 0.001 cgs. Remnant inclination and declination values were required to match the amplitude of observed magnetic anomalies. As the final step, a bunch of bodies were created correspond to dikes. Most of these dikes were observed in the field, but some were buried.

3.4.2.1. C-C' Cross-Section

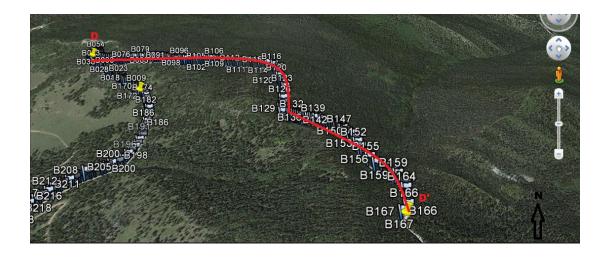
Length of the C-C' cross section is approximately 700 m (Figure 3.7). This profile was created in order to find out dike locations and orientations. Sedimentary rocks and basement rocks ignored while preparing the cross section because the survey area is characterized by radial dike swarms and magnetic models would allow us to identify intrusive features of the Raton basin.

In this cross section, 5 dikes were defined (Figure 3.8). All dikes in this cross section show remnant inclination that causes positive magnetic anomalies. We observed westernmost

two dikes on the cross-section during fieldwork. Rest of three dikes was probably buried and we couldn't see. The most prominent feature on the cross section, the easternmost dike is the highest one according to the data. The dike is highly magnetized. Other dikes are relatively low magnetized and mostly buried.


Figure 3.6. Orientation of C-C' cross section with magnetic stations (image was taken from Google Earth).

3.4.2.2. D-D' Cross-Section


Length of the D-D' cross section is approximately 1400 m (Figure 3.9). This cross section is longer than the C-C' cross section. This profile was also created in order to find out dike locations and orientations. Sedimentary rocks and basement rocks ignored as well.

In this cross section, we defined much more dikes rather than D-D' cross section (Figure 3.10). Since orientation of the cross section is roughly perpendicular to the Spanish Peaks. Dikes in this cross section show both remnant inclination and remnant declination. The easternmost

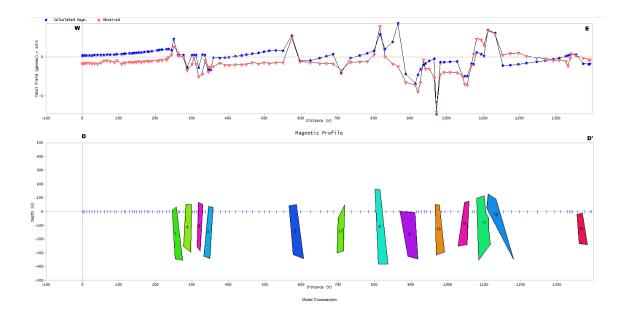

four dikes show characteristics of radial dike swarms in the Raton basin. Dikes are highly magnetized. Consequently, show abrupt fluctuation on the profile.

Figure 3.7. C-C' cross section. Total width of cross section is 700 m and total depth of the cross section is 500 m.

Figure 3.8. Orientation of D-D' cross section with magnetic stations (image was taken from Google Earth).

Figure 3.9. D-D' cross section. Total width of cross section is 1400 m and total depth of the cross section is 500 m.

CHAPTER 4

CONCLUSIONS

There have been a number of detailed geologic studies of the Raton basin. However, there have not previously been investigations that jointly interpreted geologic, gravity and magnetic observations, such has been done here. Therefore, this study concentrated on collecting as much geophysical data as possible in the fieldwork. We tried to reveal to tectonic frameworks and magnetic history of the Raton basin. To reach the purpose, gravity and magnetic survey has done, and structural models created in the GRAVMAG program. Conclusions of my thesis are listed below.

- 1) The Raton Basin is characterized by a significant negative Bouguer gravity anomaly. In the northern Raton basin the anomaly is approximately 20 mgal, whereas in the southern portion the negative anomaly is approximately 55-60 mgal.
- 2) Structurally, the Raton Basin is deformed into a highly asymmetric synform with shallow dips in the east and steep to overturned dips along its western limb. This synform is bounded by multiple high-angle reverse faults in the west, and contains a zone of structurally repeated nappes in the Sangre de Cristo Formation. Gravity models also indicate a forebulge and possibly an eastward vergent thrust fault at the eastern edge of the basin.
- 3) Gravity models, constrained by surface geology, drill core data, and rock density measurements, suggest that the Raton Basin thickens from approximately 3 km in the north to 5 km in the south.
- 4) The basin deepens at the central portion. Pennsylvanian Sangre de Cristo formation is the basal sedimentary unit of the basin, and it was thrusted at the western edge of the survey area. Accumulation of the Sangre de Cristo formation is related to the Ancestral Rocky

Mountains. After the Sangre de Cristo range uplifting and erosion, the Sangre de Cristo formation was formed. Sedimentary units that were accumulated from the late Cretaceous to the Tertiary time show continuous sequence in survey area. So, syn-Laramide orogenic sedimentation is continually represented in the survey area.

- 5) The Poison Canyon, Cuchara and Huefano Formations are syn-orogenic Laramide age units that were deposited in conjunction with the evolution of the La Veta Syncline and fill depositional space along the syncline axis.
- 6) The Raton Basin is also characterized by an approximately 10 mgal gravity high between the northern and southern parts. This high is associated with the Spanish Peaks. Gravity models indicate a high density magmatic intrusion underlays much of this area. This is consistent with the metamorphic rocks and small outcrops of intrusive rock that occur in this area.
- 7) The significantly greater thickness of the Sangre de Cristo Formation in the southern part of the Raton Basin suggests that it also may have been a large foreland basin during the earlier Ancestral Rocky Mountains and that it has remained a locus of tectonic activity over much of its history.
- 8) Magnetic susceptibility values of the Raton Basin igneous rocks are between 11*10⁻³ and 25*10⁻³ s.i. Magnetic susceptibility values represent induced magnetism. However, interpretation of magnetic signatures of igneous rocks is not possible without remnant magnetization. Furthermore, igneous rocks of the Raton Basin show both reverse and normal magnetic polarity.

APPENDIX A

DENSITY AND MAGNETIC SUSCEPTIBLITY TABLES

Latitude	Longitude	Elevation	Station	Sample	Formation	Density (g/cm³)	Magnetic Susceptibility (*10^-3 s.i)	S.Deviation
37.35	-105.06	3224.60	13RB340A	Fine Grained Sandstone	Cuchara Formation	2.27	0.05	0.00
37.35	-105.06	3224.60	13RB340B	Coarse- Grained Sandstone	Cuchara Formation	2.23	0.05	0.01
37.35	-105.06	3238.30	13RB341	Fine-Grained Sandstone	Cuchara Formation	2.34	13.30	0.78
37.35	-105.06	3241.40	13RB342	Porphyritic Dike	Granodiorite	2.57	12.10	0.46
37.35	-105.05	3297.40	13RB343	Porphyritic Dike	Granodiorite	2.81	21.80	1.16
37.35	-105.05	3304.60	13RB344A	Conglomerate	Poison Canyon Formation	2.48	0.38	0.03
37.35	-105.05	3304.60	13RB344B	Porphyritic Dike	Syenogabro	2.72	25.40	0.15
37.34	-105.06	3108.30	13RB346A	Sill	Syenodiorite	2.53	15.90	0.60
37.34	-105.06	3108.30	13RB346B	Black Shale	Poison Canyon Formation	1.66	0.09	0.01
37.34	-105.06	3096.00	13RB347A	Siltstone	Vermejo Formation	2.17	0.09	0.01
37.34	-105.06	3096.00	13RB347B	Shale	Vermejo Formation	2.52	0.25	0.20
37.34	-105.06	3096.00	13RB347C	Sandstone	Vermejo Formation	2.48	0.15	0.02

Latitude	Longitude	Elevation	Station	Sample	Formation	Density (g/cm³)	Magnetic Susceptibility (*10^-3 s.i)	S.Deviation
37.33	-105.07	3062.90	13RB349A	Porphyritic Dike	Granodiorite	2.67	11.40	1.19
37.33	-105.07	3062.90	13RB349B	Black Shale	Cuchara Formation	2.55	0.23	0.02
37.33	-105.07	3062.90	13RB349C	Shale	Cuchara Formation	2.44	0.57	0.08
37.43	-105.04	2364.00	13RB381A	Sandstone	Raton Formation	2.26	0.48	0.01
37.43	-105.04	2364.00	13RB381B	Coal	Raton Formation	1.63	0.05	0.00
37.43	-105.04	2364.00	13RB381C	Siltstone	Raton Formation	2.32	0.17	0.02
37.33	-105.11	2791.80	13RB392A	Fine-Grained Sandstone	Sangre de Cristo Formation	2.80	0.14	0.01
37.33	-105.11	2791.80	13RB392B	Coarse- Grained Sandstone	Sangre de Cristo Formation	2.44	0.23	0.02
37.33	-105.11	2791.80	13RB392C	Coarse- Grained Sandstone	Sangre de Cristo Formation	2.48	0.14	0.00
37.34	-105.00	3042.00	13RB401	A metamorphic unit	Gneiss	2.52	0.21	0.01
37.34	-105.00	3073.00	13RB418	Porphyritic Dike	Syenodiorite	2.67	11.80	0.31
37.35	-105.05	3267.70	14R07C	Red and Green variegated siltstone	Morrison Formation	2.19	0.08	0.00

Latitude	Longitude	Elevation	Station	Sample	Formation	Density (g/cm³)	Magnetic Susceptibility (*10^-3 s.i)	S.Deviation
37.40	-104.65	2945.39	14R06A	Fine-Grained Sandstone	Dakota Sandstone	2.34	0.07	0.01
37.38	-104.67	2980.42	14R04A	Grey Coarse- Grained Sandstone	Poison Canyon Formation	2.41	1.71	0.02
37.34	-105.01	3332.08	14R17A	A Metamorphic Cobble	Gneiss	2.69	0.25	0.00
37.32	-105.07	30251.62	14R11B	Fine Grained Sandstone	Sangre de Cristo Formation	2.39	0.32	0.01
37.35	-105.05	3267.70	14R07A	Greenish Sandstone	Morrison Formation	2.47	0.15	0.01
37.36	-104.70	3013.41	14R02A	Coarse-Grained Reddish Sandstone	Cuchara Formation	2.38	0.10	0.01
37.35	-105.04	3364.72	14R08A	Coarse-Grained Sandstone	Dockum Group	2.44	0.20	0.01
37.32	-105.07	3031.63	14R10A	Red and Orange Fine-Grained Sandstone	Entrada Sandstone	2.35	0.66	0.09
37.35	-105.05	3267.70	14R07B	Chert/Mudstone	Morrison Formation	2.14	0.75	0.01
37.38	-104.69	3002.21	14R03A	Grey Sandstone	Poison Canyon Formation	2.45	14.70	0.12
37.35	-105.03	3430.25	14R09A	Coarse-Grained Maroon Sandstone	Dockum Group	2.39	0.85	0.04

Latitude	Longitude	Elevation	Station	Sample	Formation	Density (g/cm³)	Magnetic Susceptibility (*10^-3 s.i)	S.Deviation
37.33	-105.04	3345.72	14R11A	Coarse- Grained Sandstone	Sangre de Cristo Formation	2.51	0.28	0.04
37.38	-104.69	3002.21	14R03B	Porphyritic Dike	Granite	2.69	7.96	0.33
37.39	-104.66	2956.78	14R05A	Grey Shale	Pierre Shale	2.38	2.75	0.33
37.35	-104.71	3041.72	14R01A	Sandstone	Cuchara Formation	2.31	0.19	0.01
37.35	-104.71	3041.72	14R01B	Porphyritic Dike	Andesite	2.65	7.29	0.44
37.35	-105.03	3430.25	14R16A	A Cobble of Foliated Quartzite	Quartzite	2.72	0.16	0.00

APPENDIX B

GRAVITY READINGS

Stati on	Latitud e	Longitu de	UTM northin g	UTM eastin g	Eleva tion (MSL) EGM9	Eleva tion error (m)	Dial read ing	Dail y Bas e Avg.	Mg al fro m ba se	Absolut e gravity (mgal)	Calcula ted Gravity (sea level)	Free-Air gravity correcti on	Simple Bougue r gravity correcti on	Free- Air Ano maly	Simpl e Boug uer Ano maly	Easti ng dista nce from 13RB 370 (m)	Interpol ated Terrain Correct ion	Spheri cal cap correc tion	Comp lete Boug uer Anom aly
13RB 352	37.3317 033	- 105.097 0343	413167 4.74	491403 .92	2820. 66	0.1	1172 .8	1172 .25	0.0 5	979128. 8	979934. 5107	870.454 133	316.415 7165	64.75	- 251.6 7	4082. 83	6.47191 1	1.31	- 246.5 0
13RB 353	37.3302 829	- 105.099 4485	413151 7.39	491189 .88	2836. 65	0.1	1125 .5	1172 .25	3.9 5	979124. 86	979934. 3868	875.390 19	318.210 0052	65.86	- 252.3 5	3868. 79	6.17120 4	1.30	- 247.4 8
13RB 354	37.3296 8748	- 105.102 4598	413151 7.38	491189 .878	2851. 36	0.2	1086 .5	1172 .25	- 7.2 4	979121. 5673	979934. 3349	879.929 0788	319.859 9207	67.16	252.7 0	3868. 79	6.17120 4	1.29	- 247.8 2
13RB 355	37.3295 6514	- 105.106 0267	413145 1.62	490923 .04	2870. 95	0.2	1051 .3	1172 .25	- 10. 21	979118. 60	979934. 3242	885.975 7872	322.057 9384	70.25	- 251.8 1	3601. 95	5.77854 1	1.28	- 247.3 1
13RB 356	37.3292 6557	- 105.109 4212	413143 8.39	490607 .034	2892. 49	0.1	1012 .4	1172 .25	- 13. 49	979115. 31	979934. 2981	892.621 1796	324.473 5815	73.64	- 250.8 4	3285. 95	5.54779 4	1.27	- 246.5 6
13RB 357	37.3276 6477	- 105.112 3138	413140 5.5	490306 .268	2907. 83	0.3	979. 1	1172 .25	16. 30	979112. 50	979934. 1586	897.356 0294	326.194 7301	75.70	250.4 9	2985. 18	5.54779 4	1.26	246.2 0
13RB 358	37.3254 9487	- 105.114 7187	413122 8.21	490049 .807	2925. 21	0.2	924. 9	1172 .25	- 20. 88	979107. 93	979933. 9694	902.721 0404	328.144 9464	76.68	- 251.4 7	2728. 72	5.33697 8	1.25	- 247.3 8
13RB 359	37.3242 0167	- 105.117 6619	413098 7.74	489836 .458	2946. 28	0.2	867. 5	1172 .25	- 25. 72	979103. 08	979933. 8566	909.222 008	330.508 0902	78.45	- 252.0 6	2515. 37	5.33697 8	1.23	- 247.9 6
13RB 360	37.3234 7999	- 105.122 2009	413084 4.59	489575 .523	2979. 41	0.3	791. 5	1172 .25	- 32. 14	979096. 67	979933. 7937	919.446 2346	334.224 6628	82.32	- 251.9 0	2254. 44	6.00919 1	1.21	- 247.1 1
13RB 361	37.3234 8673	- 105.125 12	413076 5.04	489173 .274	3000. 07	0.2	743. 7	1172 .25	- 36. 17	979092. 63	979933. 7943	925.820 3676	336.541 7015	84.66	- 251.8 8	1852. 19	6.78489 3	1.20	- 246.3 0
13RB 362	37.3233 1167	- 105.126 9765	413076 6.13	488914 .654	3021. 07	0.3	697. 5	1172 .25	- 40. 07	979088. 74	979933. 779	932.303 1278	338.898 2268	87.26	- 251.6 4	1593. 57	6.78489 3	1.19	- 246.0 4
13RB 363	37.3212 5311	- 105.127 9194	413074 6.92	488750 .14	3044. 24	0.2	644. 6	1172 .25	- 44. 53	979084. 27	979933. 5996	939.452 1554	341.496 9446	90.12	- 251.3 7	1429. 05	8.09122 2	1.17	- 244.4 5

Sta tio n	Latitude	Longitu de	UTM northi ng	UTM eastin g	Eleva tion (MSL) EGM 96	Eleva tion error (m)	Dial readi ng	Dai ly Ba se Av g.	Mg al fro m bas e	Absol ute gravit y (mgal	Calcula ted Gravity (sea level)	Free-Air gravity correctio n	Simple Bouguer gravity correction	Free- Air Ano maly	Sim ple Bo ugu er An om aly	Eastin g distan ce from 13RB3 70 (m)	Interpolate d Terrain Correction	Spheri cal cap correc tion	Co mpl ete Bou gue r Ano mal y
13 RB 365	37.318773 96	- 105.128 3211	41304 53	48858 2.076	3084. 35	0.5	544. 3	11 72. 25	53.0 0	97907 5.81	979933 .3835	951.8310 272	345.996744 7	94.25	- 251 .74	1260.9 9	10.26021	1.14	- 242. 62
13 RB 366	37.319054 98	- 105.134 2986	41302 43.67	48863 0.334	3133. 25	0.2	441. 2	11 72. 25	- 61.7 0	97906 7.10	979933 .408	966.9194 07	351.481468 5	100.6 2	- 250 .87	1309.2 5	10.26021	1.11	- 241. 71
13 RB 367	37.316526 53	- 105.137 2969	41302 75.59	48810 0.746	3176. 12	0.2	338. 7	11 72. 25	- 70.3 5	97905 8.45	979933 .1875	980.1503 234	356.290992 4	105.4 2	- 250 .88	779.66	12.49649	1.07	- 239. 45
13 RB 368	37.312654 23	- 105.140 4071	41295 66.28	48755 8.466	3218. 58	0.5	232. 1	11 72. 25	- 79.3 5	97904 9.46	979932 .85	993.2531 708	361.053962 3	109.8 6	- 251 .19	237.38	18.7443	1.04	- 233. 49
13 RB 369	37.318765 23	- 105.141 2198	41302 44.34	48748 7.459	3214. 38	0.4	264	11 72. 25	- 76.6 6	97905 2.15	979933 .3827	991.9585 938	360.583375 2	110.7 2	- 249 .86	166.37	14.98934	1.04	- 235. 91
13 RB 370	37.324755 11	- 105.143 1089	41309 09.1	48732 1.086	3193. 16	0.2	326. 1	11 72. 25	- 71.4 2	97905 7.39	979933 .9049	985.4082 502	358.202282 8	108.8 9	- 249 .31	0.00	12.04328	1.06	- 238. 32
13 RB 371							1171 .7	11 72. 25	- 0.05	97912 8.76	978032 .6771								
13 RB 372	37.332805 15	- 105.094 902	41317 96.79	49159 2.941	2828. 50	0.2	1167 .6	11 72. 25	0.39	97912 8.41	979934 .6067	872.8744 828	317.295529 3	66.68	- 250 .62	4271.8 5	6.471911	1.30	- 245. 45
13 RB 373	37.332948 39	- 105.091 4355	41318 12.38	49190 0.038	2857. 66	0.2	1112 .2	11 72. 25	- 5.07	97912 3.74	979934 .6192	881.8729 502	320.566530 5	70.99	- 249 .58	4578.9 5	6.619564	1.29	- 244. 24
13 RB 374	37.331122 8	- 105.091 0497	41316 09.81	49193 4.017	2874. 56	0.6	1070 .9	11 72. 25	- 8.55	97912 0.25	979934 .46	887.0892 16	322.462676 9	72.88	- 249 .58	4612.9 3	6.619564	1.28	- 244. 24
13 RB 375	37.329649 56	- 105.088 1369	41314 46.13	49219 1.906	2894. 60	0.5	1017 .5	11 72. 25	- 13.0 6	97911 5.74	979934 .3316	893.2723 256	324.710277 3	74.68	- 250 .03	4870.8 2	5.912086	1.27	- 245. 38
13 RB 376	37.328748 52	- 105.091 7363	41313 46.47	49187 2.939	2916. 64	0.6	963. 2	11 72. 25	- 17.6 4	97911 1.16	979934 .253	900.0757 212	327.183355 7	76.98	- 250 .20	4551.8 5	5.912086	1.25	- 245. 54
13 RB 377	37.326958 18	- 105.085 0173	41311 47.3	49246 8.011	2954. 52	0.3	869. 7	11 72. 25	- 25.5 4	97910 3.27	979934 .097	911.7645 634	331.432325 6	80.94	- 250 .50	5146.9 2	5.921334	1.23	- 245. 80
13 RB 378	37.322880 2	- 105.080 7881	41306 94.56	49284 2.297	2991. 55	0.3	777	11 72. 25	- 33.3 6	97909 5.45	979933 .7414	923.1920 214	335.586280 6	84.90	- 250 .69	5521.2 1	5.349398	1.21	- 246. 55
13 RB 379	37.320488 42	- 105.073 9042	41304 28.72	49345 1.995	3031. 33	0.1	689. 2	11 72. 25	- 40.7 7	97908 8.04	979933 .5329	935.4696 724	340.049286 3	89.97	- 250 .08	6130.9 1	5.541683	1.18	- 245. 71
13 RB 380	37.315898 73	- 105.066 3587	41299 19.04	49412 0.18	2984. 21	0.1	789. 3	11 72. 25	- 32.3 2	97909 6.48	979933 .1328	920.9281 318	334.763342 1	84.28	- 250 .48	6799.0 9	6.752139	1.21	- 244. 94

Statio n	Lati tud e	Longit ude	UTM northi ng	UTM eastin g	Eleva tion (MSL) EGM 96	Eleva tion error (m)	Dial readi ng	Daily Base Avg.	Mgal from base	Absol ute gravit y (mgal)	Calcul ated Gravit y (sea level)	Free- Air gravity correct ion	Simp le Bou guer gravi ty corr ectio n	Free- Air Ano maly	Simple Bouguer Anomaly	Eastin g distan ce from 13RB 370 (m)	Inte rpol ated Terr ain Cor rect ion	Spher ical cap corre ction	Comple te Bougue r Anomal y
13RB3 81	37. 312 043 38	- 105.06 07128	41294 91	49462 0.166	2920. 28	0.1	935.3	1172.25	20.00	97910 8.81	979932 .7967	901.19 71736	327. 5910 109	77.21	-250.38	7299.0 8	8.73 777	1.25	-242.90
13RB3 82	37. 305 305 23	- 105.05 80385	41287 43.33	49485 6.682	2881. 71	0.1	1020. 5	1172.25	- 12.81	97911 6.00	979932 .2094	889.29 66318	323. 2650 869	73.08	-250.18	7535.6 0	10.4 590 2	1.27	-241.00
13RB3 93							1162. 7	1162.7	0.00	97912 8.80	978032 .6771								
13RB3 94							681.5	1162.7	- 40.61	97908 8.19	978032 .6771								
13RB3 95	37. 330 030 8	- 105.06 65061	41314 86.86	49410 8.226	3052. 38	0.4	638.1	1162.7	- 44.28	97908 4.53	979934 .3648	941.96 41594	342. 4100 744	92.13	-250.28	6787.1 4	7.99 517 5	1.16	-243.45
13RB3 96	37. 335 361 04	- 105.05 6753	41320 77.63	49497 2.607	3095. 09	0.2	545.2	1162.7	- 52.12	97907 6.69	979934 .8296	955.14 50826	347. 2014 253	97.00	-250.20	7651.5 2	9.87 997 2	1.13	-241.45
13RB3 97	37. 346 343 76	- 105.05 4782	41332 95.94	49514 7.907	3180. 17	0.5	359.1	1162.7	- 67.82	97906 0.98	979935 .7872	981.40 0462	356. 7454 258	106.5 9	-250.15	7826.8 2	9.08 874 4	1.07	-242.13
13RB3 98	37. 352 016 2	- 105.05 4161	41339 25.21	49520 3.27	3260. 24	0.3	156.2	1162.7	- 84.95	97904 3.86	979936 .2818	1006.1 10064	365. 7275 263	113.6 8	-252.04	7882.1 8	8.66 76	1.00	-244.38
13RB3 99	37. 349 920 61	- 105.04 63718	41336 92.36	49589 3.002	3305. 00	0.5	58	1162.7	- 93.24	97903 5.57	979936 .0991	1019.9 23	370. 7486 18	119.3 9	-251.36	8571.9 2	9.41 041	0.96	-242.91
13RB4 00	37. 337 744 9	- 105.00 64175	41323 40.6	49943 1.533	3279. 71	0.6	131.5	1162.7	- 87.03	97904 1.77	979935 .0374	1012.1 18506	367. 9116 338	118.8 5	-249.06	12110. 45	12.6 274 2	0.99	-237.42
13RB4 01	37. 343 594 44	- 105.01 08516	41329 89.58	49903 8.833	3331. 52	0.1	17.4	1162.7	- 96.66	97903 2.14	979935 .5475	1028.1 05529	373. 7230 203	124.7 0	-249.02	11717. 75	11.9 783 8	0.94	-237.99
13RB4 02	37. 333 162 85	- 105.00 62981	41318 32.27	49944 2.076	3178. 36	0.2	379.1	1162.7	- 66.14	97906 2.67	979934 .6379	980.84 0353	356. 5418 226	108.8 7	-247.67	12120. 99	12.7 207 6	1.07	-236.02
13RB4 03	37. 338 846 01	- 105.00 00138	41324 62.74	49999 8.774	3097. 53	0.8	603.6	1162.7	- 47.19	97908 1.62	979935 .1334	955.89 6215	347. 4744 668	102.3 8	-245.10	12677. 69	12.2 521 5	1.13	-233.97

Stati on	Latitud e	Longitu de	UTM northin g	UTM easting	Elevat ion (MSL) EGM9	Elevat ion error (m)	Dial readi ng	Dail y Bas e Avg	Mga I fro m bas e	Absol ute gravit y (mgal)	Calcula ted Gravity (sea level)	Free-Air gravity correcti on	Simple Bougue r gravity correcti on	Free- Air Ano maly	Simpl e Boug uer Ano maly	Easti ng dista nce from 13RB 370 (m)	Interpol ated Terrain Correct ion	Spheri cal cap correc tion	Comp lete Boug uer Anom aly
13RB 431	37.3457 1124	- 104.997 5111	413322 4.37	500220 .442	2999. 76	0.4	842. 5	116 2.7	- 27.0 2	97910 1.78	979935. 732	925.727 1704	336.507 8237	91.77	- 244.7 3	12899 .36	12.0789 4	1.20	- 233.8 5
13RB 432	37.3388 0528	- 104.987 753	413245 8.29	501084 .836	2888. 96	1	1098 .7	116 2.7	- 5.40	97912 3.40	979935. 1299	891.531 8216	324.077 5929	79.80	- 244.2 7	13763 .75	10.8710 1	1.27	234.6 7
13RB 433	37.3292 4868	- 104.974 3328	413139 8.32	502273 .885	2776. 45	0.9	1377 .8	116 2.7	18.1 5	97914 6.96	979934. 2966	856.811 5442	311.456 5471	69.47	- 241.9 8	14952 .80	6.50300 9	1.33	- 236.8 1
13RB 434	37.3277 5288	- 104.957 4352	413123 2.92	503770 .928	2666. 72	0.2	366. 8	- 78.1	37.5 5	97916 6.35	979934. 1662	822.950 7178	299.147 9173	55.14	- 244.0 1	16449 .84	3.76155 7	1.38	241.6 3
13RB 435	37.3260 2506	- 104.940 8752	413104 2.03	505238 .143	2593. 98	0.2	532. 2	- 78.1	51.5 1	97918 0.31	979934. 0156	800.501 9194	290.987 6337	46.80	- 244.1 9	17917 .06	2.94512 7	1.41	- 242.6 5
13RB 436	37.3262 3756	- 104.923 5727	413106 6.7	506771 .035	2535. 12	0.1	664	- 78.1	62.6 3	97919 1.44	979934. 0341	782.338 3406	284.385 0551	39.74	- 244.6 4	19449 .95	2.69098 9	1.43	- 243.3 8
13RB 437	37.3206 4345	- 104.906 7401	413044 7.43	508262 .924	2469. 04	0.2	795. 5	- 78.1	73.7 3	97920 2.54	979933. 5464	761.945 744	276.972 2141	30.94	- 246.0 4	20941 .84	2.54674 4	1.45	- 244.9 4
13RB 438	37.3247 2584	- 104.889 9449	413090 1.93	509750 .471	2421. 84	0.2	910. 6	- 78.1	83.4 5	97921 2.25	979933. 9023	747.378 5896	271.676 9591	25.73	- 245.9 5	22429 .39	2.60055 4	1.46	- 244.8 1
13RB 439	37.3234 9565	- 104.872 8645	413076 7.35	511263 .92	2375. 58	2.2	1015	- 78.1	92.2 6	97922 1.06	979933. 7951	733.103 988	266.488 049	20.37	- 246.1 2	23942 .83	2.36419 7	1.48	245.2 3
13RB 440	37.3198 6131	- 104.855 6459	413036 6.35	512790 .065	2330. 11	0.3	1102 .7	- 78.1	99.6 6	97922 8.46	979933. 4783	719.071 6374	261.387 1986	14.06	247.3 3	25468 .98	2.08181 4	1.49	246.7 3
13RB 441	37.3222 2565	- 104.834 1522	413063 1.78	514693 .983	2278. 30	0.2	1246 .8	- 78.1	111. 82	97924 0.63	979933. 6844	703.083 6886	255.575 4757	10.03	- 245.5 5	27372 .90	1.92243 8	1.49	- 245.1 2
13RB 442	37.3233 9823	- 104.821 7512	413076 3.86	515792 .459	2255. 41	0.1	1312 .4	- 78.1	117. 36	97924 6.16	979933. 7866	696.019 2174	253.007 4946	8.40	- 244.6 1	28471 .37	1.74555	1.50	- 244.3 6
13RB 443	37.3189 7024	- 104.804 1885	413027 5.7	517349 .496	2215. 68	0.1	268. 5	- 121 8.5	125. 50	97925 4.31	979933. 4006	683.758 2308	248.550 5466	4.67	- 243.8 9	30028 .41	1.55786 5	1.50	243.8 3
13RB 444	37.3131 0879	- 104.790 5916	412962 8.02	518555 .668	2190. 07	0.1	334. 7	- 121 8.5	131. 09	97925 9.89	979932. 8896	675.855 2934	245.677 7776	2.86	- 242.8 2	31234 .58	1.42713 3	1.50	- 242.9 0
13RB 445	37.3087 1234	- 104.772 8128	412914 3.92	520132 .219	2142. 55	0.1	463. 2	- 121 8.5	141. 94	97927 0.74	979932. 5064	661.190 93	240.347 1865	-0.58	- 240.9 2	32811 .13	1.19884 6	1.51	- 241.2 3

Statio n	Latitud e	Longitu de	UTM northin g	UTM eastin g	Eleva tion (MSL) EGM9	Eleva tion error (m)	Dial readi ng	Dail y Bas e Avg	Mga I fro m bas e	Absol ute gravit y (mgal)	Calcula ted Gravity (sea level)	Free-Air gravity correcti on	Simple Bougue r gravity correcti on	Free- Air Ano maly	Simpl e Boug uer Ano maly	Easti ng dista nce from 13RB 370 (m)	Interpol ated Terrain Correct ion	Spheri cal cap correc tion	Comp lete Boug uer Anom aly
13RB 446	37.3150 218	- 104.758 219	412984 7.1	521423 .668	2122. 61	0.1	544. 6	- 121 8.5	148. 81	97927 7.61	979933. 0564	655.037 1374	238.110 243	-0.41	238.5 2	34102 .58	0.94153 4	1.51	239.0 9
13RB 447	37.3224 1138	- 104.742 1608	413067 0.65	522844 .307	2099. 93	0.1	642	- 121 8.5	157. 03	97928 5.83	979933. 7006	648.039 0152	235.566 3803	0.17	235.4 0	35523 .22	0.90265 3	1.51	236.0 0
13RB 448	37.3322 158	- 104.730 0229	413176 1.36	523916 .614	2070. 48	0.1	746	- 121 8.5	165. 80	97929 4.61	979934. 5553	638.948 585	232.261 95	-1.00	233.2 6	36595 .53	1.10276 7	1.51	233.6 7
13RB 449	37.3408 6321	- 104.716 8531	413272 4.11	525080 .421	2055. 84	0.1	811. 4	- 121 8.5	171. 32	97930 0.13	979935. 3093	634.432 224	230.620 2235	-0.75	- 231.3 7	37759 .33	1.39630 5	1.51	- 231.4 8
13RB 450	37.3497 6405	- 104.706 8964	413371 4.26	525959 .294	2041. 72	0.1	868. 7	- 121 8.5	176. 16	97930 4.96	979936. 0854	630.075 7178	229.036 6053	-1.05	230.0 8	38638 .21	1.64998 2	1.51	- 229.9 4
13RB 451	37.3626 6323	- 104.699 8513	413514 7.26	526578 .709	2013. 41	0.2	960. 6	- 121 8.5	183. 92	97931 2.72	979937. 2103	621.338 6346	225.860 619	-3.15	229.0 1	39257 .62	1.72551 4	1.51	- 228.8 0
13RB 452	37.3751 1951	- 104.688 0665	413653 2.55	527617 .713	2002. 21	0.1	1016 .3	- 121 8.5	188. 62	97931 7.42	979938. 2967	617.881 3888	224.603 8877	-2.99	227.6 0	40296 .63	1.57291	1.51	- 227.5 3
13RB 453	37.3845 033	- 104.674 5314	413757 7.65	528812 .485	1980. 42	0.1	1086 .7	- 121 8.5	194. 56	97932 3.36	979939. 1153	611.157 9206	222.159 8635	-4.59	- 226.7 5	41491 .40	1.32527 1	1.51	- 226.9 4
13RB 454	37.3926 1459	- 104.661 7498	413848 1.5	529940 .768	1956. 78	0.1	1160 .5	- 121 8.5	200. 79	97932 9.59	979939. 8228	603.861 9994	219.507 7488	-6.37	- 225.8 8	42619 .68	1.07927 9	1.51	226.3 0
13RB 455	37.4025 0871	- 104.652 0542	413958 2.29	530794 .948	1945. 39	0.2	1209 .4	- 121 8.5	204. 91	97933 3.72	979940. 686	600.346 4282	218.229 8159	-6.62	- 224.8 5	43473 .86	0.83056 5	1.51	- 225.5 2
13RB 456	37.4176 6164	- 104.642 4271	414126 6.56	531640 .624	1933. 87	0.2	1244 .8	- 121 8.5	207. 90	97933 6.71	979942. 0082	596.792 8992	216.938 0851	-8.51	- 225.4 5	44319 .54	0.63830 5	1.50	- 226.3 1
13RB 457	37.4265 1812	- 104.631 5758	414225 2.81	532596 .984	1916. 10	0.1	1283 .8	- 121 8.5	211. 19	97934 0.00	979942. 781	591.309 6944	214.944 9047	- 11.47	- 226.4 2	45275 .90	0.51480 9	1.50	- 227.4 1
13RB 458	37.4263 8438	- 104.601 3096	414224 8.87	535274 .916	1886. 79	0.1	1364	- 121 8.5	217. 96	97934 6.77	979942. 7693	582.262 1596	211.656 0671	- 13.74	- 225.4 0	47953 .83	0.41467 2	1.50	- 226.4 8
14R12							1692 .7			97912 8.80									
14R13 .cor	37.3205 0047	- 105.073 8655	413043 0.05	493455 .429	3031. 63	0.1	1211 .2			97908 8.17	979933. 534	935.559 475	340.081 9301	90.19	- 249.8 9	6134. 34	5.54168 3	1.18	- 245.5 3

Statio n	Latitude	Longitu de	UTM northin g	UTM easting	Elevat ion (MSL) EGM9	Elevat ion error (m)	Dial readi ng	Dai ly Ba se Av g.	Mg al fro m ba se	Absol ute gravit y (mgal)	Calculat ed Gravity (sea level)	Free-Air gravity correcti on	Simple Bougue r gravity correcti on	Free- Air Anom aly	Simpl e Boug uer Anom aly	Easti ng dista nce from 13RB 370 (m)	Interpol ated Terrain Correcti on	Spheri cal cap correc tion	Comp lete Boug uer Anom aly
14R14 .cor	37.3513 3426	- 105.052 7689	413384 9.49	495326 .519	3267. 70	0.1	668. 7			97904 2.38	979936. 2224	1008.41 0677	366.563 814	114.5 7	252.0 0	8005. 43	9.04485 4	1.00	- 243.9 5
14R15 .cor	37.3460 4126	- 105.038 1503	413326 1.66	496620 .979	3364. 72	0.6	437. 5			97902 2.87	979935. 7608	1038.35 3826	377.448 3428	125.4 6	- 251.9 9	9299. 89	10.4164 6	0.91	- 242.4 8
14R16 .cor	37.3484 3056	- 105.025 1865	413352 6.34	497769 .272	3430. 25	0.1	300. 6			97901 1.31	979935. 9692	1058.57 3607	384.798 364	133.9 2	- 250.8 8	10448 .19	10.7938 5	0.85	240.9 4
14R17 .cor	37.3436 2495	- 105.010 9231	413299 2.97	499032 .495	3332. 08	0.2	543. 8	·		97903 1.84	979935. 5501	1028.28 0814	373.786 7374	124.5 7	- 249.2 2	11711 .41	11.9783 8	0.94	- 238.1 8
14R18	37.3205 0047	- 105.073 8655	413043 0.05	493455 .429	3031. 63	0.1	1209 .3			97908 8.01	979933. 534	935.559 475	340.081 9301	90.03	- 250.0 5	6134. 34	5.54168 3	1.18	- 245.6 9

APPENDIX C

MAGNETIC READINGS

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.31372 8	- 105.13903 8			13RB00 2	367.83	3208				
37.33184 1	- 105.09727 3			13RB00 3	357.02	2846.8				
37.34883 9	- 105.05757 6	494900.6 1	4133572.9 1	13RB00 4	351.89	3202.3	51,08 8	51,002	86	-78
37.34883 8	- 105.05769 8	494889.8 1	4133572.8 1	13RB00 5	342.59	3219.1	51,11 6	51,002	114	-50
37.34883 4	- 105.05775 6	494884.6 7	4133572.3 7	13RB00 6	332.22	3220.3	51,40 4	51,002	402	239
37.34884	- 105.05786 1	494875.3 7	4133573.0 4	13RB00 7	326.20	3220.5	51,67 8	51,002	676	513
37.34882 9	- 105.05797 8	494865.0 1	4133571.8 2	13RB00 8	317.52	3221	51,94 8	51,002	946	783
37.34884	- 105.05804 6	494858.9 8	4133573.0 5	13RB00 9	312.47	3221.5	51,83 8	51,002	836	673
37.34879 4	- 105.05814 4	494850.3 0	4133567.9 5	13RB01 0	301.04	3221.2	51,78 0	51,002	778	615
37.34879	- 105.05820 1	494845.2 5	4133567.5 1	13RB01 1	295.46	3222	51,68 0	51,002	678	515
37.34876	- 105.05833	494833.8 3	4133564.1 9	13RB01 2	286.34	3222.4	51,78 8	51,002	786	623
37.34879 1	- 105.05839 3	494828.2 5	4133567.6 3	13RB01 3	281.82	3223.2	51,66 0	51,002	658	495
37.34873 8	- 105.05849 6	494819.1 2	4133561.7 6	13RB01 4	268.45	3222.9	51,04 8	51,002	46	-118
37.34875 4	- 105.05854 7	494814.6 1	4133563.5 3	13RB01 5	262.87	3223.4	50,34 4	51,002	-658	-822
37.34874 9	- 105.05869 8	494801.2 3	4133562.9 9	13RB01 6	256.22	3222.2	50,80 3	51,002	-199	-363
37.34875 4	- 105.05876 1	494795.6 5	4133563.5 5	13RB01 7	245.24	3222.7	50,82 8	51,002	-174	-338
37.34873	- 105.05883 6	494789.0 1	4133560.8 9	13RB01 8	238.24	3222.7	50,72 8	51,002	-274	-438
37.34872 2	- 105.05896	494778.0 3	4133560.0 1	13RB01 9	234.44	3222.4	50,58 8	51,002	-414	-578
37.34872 2	- 105.05903 9	494771.0 3	4133560.0 1	13RB02 0		3222.4	52,86 2	51,002	1,860	1,697
37.34871 3	- 105.05908 2	494767.2 2	4133559.0 1	13RB02 1		3222.2	51,99 8	51,002	996	833

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.34872 2	- 105.05911 3	494764.4 7	4133560.0 1	13RB02 2	231.69	3223.4	52,84 3	51,002	1,841	1,678
37.34874 2	- 105.05920 4	494756.4 2	4133562.2 4	13RB02 3	223.63	3223.4	52,18 6	51,002	1,184	1,021
37.34869 2	- 105.05927 2	494750.3 9	4133556.7 0	13RB02 4	217.61	3223.6	51,13 7	51,002	135	-29
37.34869 3	- 105.05944 6	494734.9 8	4133556.8 2	13RB02 5	202.20	3223.6	50,55 3	51,002	-449	-613
37.34868 7	- 105.05949 4	494730.7 3	4133556.1 5	13RB02 6	197.94	3223.4	50,75 4	51,002	-248	-412
37.34869	- 105.05954 7	494726.0 3	4133556.4 9	13RB02 7	193.25	3223.9	50,85 6	51,002	-146	-310
37.34869 9	- 105.05963 2	494718.5 1	4133557.4 9	13RB02 8	185.72	3224.4	50,92 0	51,002	-82	-246
37.34868	- 105.05976 2	494706.9 9	4133555.3 9	13RB02 9	174.21	3223.6	50,88 8	51,002	-114	-278
37.34865 9	- 105.05983 2	494700.7 9	4133553.0 7	13RB03 0	168.01	3224.6	50,91 3	51,002	-89	-253
37.34865	- 105.06000 1	494685.8 2	4133552.0 8	13RB03 1	153.04	3224.6	50,93 7	51,002	-65	-229
37.34862 5	- 105.06006	494680.5 9	4133549.3 1	13RB03 2	147.81	3225.1	50,86 2	51,002	-140	-304
37.34867	- 105.06014 2	494673.3 3	4133554.3 0	13RB03 3	140.55	3225.8	51,03 7	51,002	35	-129
37.34868 2	- 105.06022 9	494665.6 3	4133555.6 4	13RB03 4	132.85	3225.1	50,96 4	51,002	-38	-202
37.34867 1	- 105.06026 7	494662.2 6	4133554.4 2	13RB03 5	129.48	3225.3	50,93 1	51,002	-71	-235
37.34863 2	- 105.06044 1	494646.8 5	4133550.1 0	13RB03 6	114.07	3225.6	50,93 7	51,002	-65	-229
37.34862 9	- 105.06049 1	494642.4 2	4133549.7 7	13RB03 7	109.64	3226.3	50,91 9	51,002	-83	-247
37.34862 2	- 105.06058 8	494633.8 3	4133549.0 0	13RB03 8	101.05	3226.5	50,90 8	51,002	-94	-258
37.34859 4	- 105.06068 4	494625.3 2	4133545.9 0	13RB03 9	92.54	3227.2	50,89 7	51,002	-105	-269
37.34858 1	- 105.06083 5	494611.9 5	4133544.4 7	13RB04 0	79.17	3227	50,96 7	51,002	-35	-199
37.34860 5	- 105.06091 1	494605.2 2	4133547.1 4	13RB04 1	72.44	3228.2	50,91 7	51,002	-85	-249

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.34858 6	- 105.06098 8	494598.4 0	4133545.0 3	13RB04 2	65.62	3228.4	50,90 5	51,002	-97	-261
37.34857 6	-105.0611	494588.4 8	4133543.9 3	13RB04 3	55.70	3228.9	50,89 5	51,002	-107	-271
37.34858 4	- 105.06118 3	494581.1 3	4133544.8 2	13RB04 4	48.34	3228.7	50,91 9	51,002	-83	-247
37.34857 8	- 105.06125 2	494575.0 2	4133544.1 6	13RB04 5	42.23	3229.4	50,93 7	51,002	-65	-229
37.34858 2	- 105.06134 8	494566.5 1	4133544.6 1	13RB04 6	33.73	3229.9	50,93 4	51,002	-68	-232
37.34859 5	- 105.06143 9	494558.4 6	4133546.0 6	13RB04 7	25.67	3229.4	50,90 8	51,002	-94	-258
37.34860 2	- 105.06154 2	494549.3 3	4133546.8 4	13RB04 8	16.55	3230.1	50,89 8	51,002	-104	-268
37.34866 4	- 105.06165 5	494539.3 3	4133553.7 2	13RB04 9	6.55	3230.4	50,97 0	51,002	-32	-196
37.34871 5	- 105.06170 1	494535.2 6	4133559.3 8	13RB05 0	2.48	3229.9	50,98 7	51,002	-15	-179
37.34877 2	- 105.06172 9	494532.7 8	4133565.7 1	13RB05 1	0.00	3229.9	51,00 2	51,002	0	-164
37.34881 9	- 105.06171 2	494534.2 9	4133570.9 2	13RB05 2		3230.4	51,00 6	51,002	4	-160
37.34892 9	- 105.06166	494538.9 1	4133583.1 2	13RB05 3		3230.4	51,01 4	51,002	12	-152
37.34896	- 105.06159 9	494544.3 1	4133586.5 6	13RB05 4		3231.6	51,01 3	51,002	11	-153
37.34896	- 105.06151 6	494551.6 6	4133586.5 5	13RB05 5		3232.3	51,01 5	51,002	13	-151
37.34894 2	- 105.06143 2	494559.1 0	4133584.5 5	13RB05 6		3232.8	51,01 0	51,002	8	-156
37.34892 2	- 105.06136	494565.4 8	4133582.3 3	13RB05 7		3232.8	51,00 1	51,002	-1	-165
37.34887 2	- 105.06126 7	494573.7 1	4133576.7 8	13RB05 8		3233.7	50,99 9	51,002	-3	-167
37.34883 7	- 105.06115 7	494583.4 5	4133572.8 9	13RB05 9		3234.2	51,02 3	51,002	21	-143
37.34885 9	- 105.06106 4	494591.6 9	4133575.3 2	13RB06 0		3234.5	51,07 0	51,002	68	-96
37.34888 2	- 105.06095 8	494601.0 8	4133577.8 7	13RB06 1		3234.7	51,08 7	51,002	85	-79

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.34892 1	- 105.06086 7	494609.1 4	4133582.1 9	13RB06 2		3235.7	51,05 7	51,002	55	-109
37.34899 3	- 105.06074 4	494620.0 4	4133590.1 7	13RB06 3		3236.1	51,04 4	51,002	42	-122
37.34898 2	- 105.06066 8	494626.7 7	4133588.9 5	13RB06 4		3236.1	51,08 5	51,002	83	-81
37.34902 7	- 105.06061 8	494631.2 0	4133593.9 4	13RB06 5		3236.4	51,45 8	51,002	456	293
37.34907 9	- 105.06051 9	494639.9 7	4133599.7 0	13RB06 6		3236.4	50,99 4	51,002	-8	-172
37.34914 4	- 105.06043 5	494647.4 2	4133606.9 1	13RB06 7		3236.1	51,03 2	51,002	30	-134
37.34914 5	- 105.06040 6	494649.9 9	4133607.0 1	13RB06 8		3236.4	51,03 0	51,002	28	-136
37.34919 7	- 105.06027 6	494661.5 0	4133612.7 8	13RB06 9		3237.1	51,04 0	51,002	38	-126
37.34924 6	- 105.06018 7	494669.3 9	4133618.2 1	13RB07 0		3237.3	51,03 6	51,002	34	-130
37.34928 1	- 105.06013	494674.4 4	4133622.0 9	13RB07 1		3237.3	51,04 3	51,002	41	-123
37.34930 9	- 105.06006 6	494680.1 1	4133625.1 9	13RB07 2		3237.8	51,05 1	51,002	49	-115
37.34938 9	- 105.05998 2	494687.5 6	4133634.0 6	13RB07 3		3238.5	51,05 6	51,002	54	-110
37.34945 5	- 105.05990 5	494694.3 8	4133641.3 8	13RB07 4		3239	51,04 0	51,002	38	-126
37.34952 2	- 105.05981 7	494702.1 8	4133648.8 1	13RB07 5		3240	51,06 3	51,002	61	-103
37.34956 7	- 105.05971 3	494711.3 9	4133653.7 9	13RB07 6		3240.5	51,06 7	51,002	65	-99
37.34960 3	- 105.05967 6	494714.6 7	4133657.7 8	13RB07 7		3240.7	51,06 4	51,002	62	-102
37.34967 1	- 105.05957 4	494723.7 1	4133665.3 2	13RB07 8		3240.5	51,06 7	51,002	65	-99
37.34972 8	- 105.05947 8	494732.2 2	4133671.6 4	13RB07 9		3240.9	51,18 7	51,002	185	22
37.34981 7	- 105.05940 3	494738.8 7	4133681.5 1	13RB08 0		3240.2	51,06 8	51,002	66	-98
37.34983 8	- 105.05934 7	494743.8 3	4133683.8 4	13RB08 1		3240.2	51,09 6	51,002	94	-70

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.34987 6	- 105.05926 4	494751.1 8	4133688.0 5	13RB08 2		3240.9	51,09 5	51,002	93	-71
37.34998 8	- 105.05912 7	494763.3 2	4133700.4 7	13RB08 3		3241.4	51,10 2	51,002	100	-64
37.34999 8	- 105.05912 6	494763.4 1	4133701.5 7	13RB08 4		3242.1	51,12 7	51,002	125	-39
37.35007 3	- 105.05905 4	494769.7 9	4133709.8 9	13RB08 5		3242.4	51,16 8	51,002	166	3
37.3501	- 105.05896 4	494777.7 7	4133712.8 8	13RB08 6		3243.3	51,23 4	51,002	232	69
37.35013 1	- 105.05890 5	494782.9 9	4133716.3 2	13RB08 7		3244.1	51,44 1	51,002	439	276
37.35026	- 105.05876 4	494795.4 9	4133730.6 2	13RB08 8		3244.8	51,29 0	51,002	288	125
37.35026 5	- 105.05872 4	494799.0 3	4133731.1 7	13RB08 9		3245.3	51,19 7	51,002	195	32
37.35027 2	- 105.05859 4	494810.5 5	4133731.9 4	13RB09 0		3246	51,16 4	51,002	162	-2
37.35029 8	- 105.05848 2	494820.4 7	4133734.8 2	13RB09 1		3245.8	50,82 7	51,002	-175	-339
37.35034 1	- 105.05833 9	494833.1 4	4133739.5 8	13RB09 2		3247	50,98 3	51,002	-19	-183
37.35036 2	- 105.05827 5	494838.8 1	4133741.9 1	13RB09 3		3247	51,14 4	51,002	142	-22
37.35036 2	- 105.05821 2	494844.3 9	4133741.9 1	13RB09 4		3247.9	50,98 1	51,002	-21	-185
37.35042 3	- 105.05813 3	494851.3 9	4133748.6 7	13RB09 5		3248.2	50,66 6	51,002	-336	-500
37.35049 6	- 105.05801 4	494861.9 3	4133756.7 6	13RB09 6		3249.4	50,74 0	51,002	-262	-426
37.35052 1	- 105.05793	494869.3 7	4133759.5 3	13RB09 7		3249.6	51,08 9	51,002	87	-77
37.35056 8	105.05783	494878.2 3	4133764.7 4	13RB09 8		3250.3	50,78 7	51,002	-215	-379
37.35062 7	- 105.05781 4	494879.6 5	4133771.2 8	13RB09 9		3250.8	50,91 8	51,002	-84	-248
37.35070 7	- 105.05774 9	494885.4 2	4133780.1 6	13RB10 0		3251.3	50,90 5	51,002	-97	-261
37.35075 2	- 105.05766 9	494892.5 0	4133785.1 4	13RB10 1		3252.7	50,92 6	51,002	-76	-240

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.35087	- 105.05747 7	494909.5 2	4133798.2 2	13RB10 2		3253	51,01 6	51,002	14	-150
37.35094 1	- 105.05732	494923.4 3	4133806.0 9	13RB10 3		3253.4	50,96 1	51,002	-41	-205
37.35099 9	- 105.05718 2	494935.6 5	4133812.5 2	13RB10 4		3253.9	50,96 4	51,002	-38	-202
37.35110 6	- 105.05699 7	494952.0 4	4133824.3 8	13RB10 5		3254.9	50,97 7	51,002	-25	-189
37.35119 6	- 105.05679 2	494970.2 1	4133834.3 5	13RB10 6		3256.1	50,97 6	51,002	-26	-190
37.35125 2	- 105.05664 8	494982.9 6	4133840.5 6	13RB10 7		3257.3	50,98 5	51,002	-17	-181
37.35133 9	- 105.05646 9	494998.8 2	4133850.2 0	13RB10 8		3259	51,02 9	51,002	27	-137
37.35141 7	- 105.05627 9	495015.6 5	4133858.8 4	13RB10 9		3259.7	50,99 6	51,002	-6	-170
37.35151 7	- 105.05610 2	495031.3 4	4133869.9 3	13RB11 0		3260.4	51,02 4	51,002	22	-142
37.35158 5	- 105.05594 8	495044.9 8	4133877.4 6	13RB11 1		3261.1	51,01 1	51,002	9	-155
37.35171 2	- 105.05573 9	495063.5 0	4133891.5 4	13RB11 2		3262.3	51,03 3	51,002	31	-133
37.35187 6	- 105.05551	495083.7 9	4133909.7 3	13RB11 3		3263.8	51,03 2	51,002	30	-134
37.35201 4	- 105.05524 2	495107.5 4	4133925.0 2	13RB11 4		3265.5	51,67 0	51,002	668	505
37.35214 6	- 105.05498 9	495129.9 5	4133939.6 5	13RB11 5		3266.2	51,05 1	51,002	49	-115
37.35218 3	- 105.05466 7	495158.4 7	4133943.7 4	13RB11 6		3267.6	51,03 3	51,002	31	-133
37.35218 5	- 105.05437 9	495183.9 8	4133943.9 5	13RB11 7		3269.1	51,00 8	51,002	6	-158
37.35200 2	- 105.05416 9	495202.5 6	4133923.6 3	13RB11 8		3270.3	51,01 0	51,002	8	-156
37.35177 1	- 105.05396 6	495220.5 3	4133898.0 0	13RB11 9		3271.2	50,99 6	51,002	-6	-170
37.35169 4	- 105.05371 3	495242.9 3	4133889.4 4	13RB12 0		3273.4	50,83 7	51,002	-165	-329
37.35155 4	- 105.05342 3	495268.6 0	4133873.9 0	13RB12 1		3274.4	51,03 5	51,002	33	-131
37.35144 1	- 105.05313 4	495294.1 9	4133861.3 5	13RB12 2		3275.8	51,04 5	51,002	43	-121

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.35131 5	- 105.05290 3	495314.6 4	4133847.3 6	13RB12 3		3276.8	51,05 9	51,002	57	-107
37.35117 1	- 105.05268 7	495333.7 6	4133831.3 7	13RB12 4		3277.7	51,23 8	51,002	236	73
37.35099 2	- 105.05251 2	495349.2 5	4133811.5 0	13RB12 5		3278.4	51,96 6	51,002	964	801
37.35080 9	- 105.05235 5	495363.1 5	4133791.1 9	13RB12 6		3279.4	51,18 0	51,002	178	15
37.35063 9	- 105.05212 1	495383.8 6	4133772.3 2	13RB12 7		3280.8	50,99 7	51,002	-5	-169
37.35043	- 105.05195	495398.9 9	4133749.1 3	13RB12 8		3282.5	50,92 5	51,002	-77	-241
37.35030 2	- 105.05171 3	495419.9 7	4133734.9 1	13RB12 9		3285.4	50,52 0	51,002	-482	-646
37.35037 2	- 105.05141 8	495446.1 1	4133742.6 7	13RB13 0		3287.6	50,43 9	51,002	-563	-727
37.35039 9	- 105.05133 4	495453.5 5	4133745.6 6	13RB13 1		3288.3	50,27 8	51,002	-724	-888
37.35042	- 105.05125 8	495460.2 8	4133747.9 8	13RB13 2		3289	50,51 4	51,002	-488	-652
37.35041 8	- 105.05116 3	495468.6 9	4133747.7 6	13RB13 3		3289.5	51,10 9	51,002	107	-57
37.35043 6	- 105.05109 6	495474.6 3	4133749.7 5	13RB13 4		3290.9	50,86 7	51,002	-135	-299
37.35042 4	- 105.05097 8	495485.0 8	4133748.4 1	13RB13 5		3290.9	50,86 3	51,002	-139	-303
37.35053 7	- 105.05076 2	495504.2 1	4133760.9 4	13RB13 6		3291.9	49,75 9	51,002	-1,243	-1,407
37.35049 4	- 105.05082 7	495498.4 6	4133756.1 7	13RB13 7		3291.9	50,63 4	51,002	-368	-532
37.35058 4	- 105.05064	495515.0 2	4133766.1 5	13RB13 8		3293.3	50,72 0	51,002	-282	-446
37.35063 1	- 105.05052 9	495524.8 6	4133771.3 6	13RB13 9		3295.7	50,77 4	51,002	-228	-392
37.35070 6	- 105.05034 3	495541.3 3	4133779.6 7	13RB14 0		3296.9	50,77 9	51,002	-223	-387
37.35074 8	- 105.05012 2	495560.9 1	4133784.3 2	13RB14 1		3296.9	50,76 4	51,002	-238	-402
37.35080 3	- 105.04994 4	495576.6 8	4133790.4 1	13RB14 2		3297.4	50,68 1	51,002	-321	-485
37.35077 2	- 105.04988 9	495581.5 5	4133786.9 7	13RB14 3		3297.2	50,47 5	51,002	-527	-691

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.35076 2	- 105.04980 1	495589.3 4	4133785.8 6	13RB14 4		3297.7	50,45 6	51,002	-546	-710
37.35075 8	- 105.04967 7	495600.3 2	4133785.4 1	13RB14 5		3298.4	50,95 1	51,002	-51	-215
37.35075 2	- 105.04960 9	495606.3 4	4133784.7 4	13RB14 6		3298.4	51,24 7	51,002	245	82
37.35072 6	- 105.04951 4	495614.7 6	4133781.8 5	13RB14 7		3299.3	51,63 4	51,002	632	469
37.35069 4	- 105.04937 7	495626.8 9	4133778.2 9	13RB14 8		3300.1	51,60 9	51,002	607	444
37.35069 1	- 105.04928 5	495635.0 4	4133777.9 6	13RB14 9		3301	51,46 9	51,002	467	304
37.35068 2	- 105.04916 9	495645.3 1	4133776.9 5	13RB15 0		3302	51,84 0	51,002	838	675
37.35062 8	- 105.04893 6	495665.9 4	4133770.9 5	13RB15 1		3302.5	51,76 0	51,002	758	595
37.35050 8	- 105.04871	495685.9 5	4133757.6 3	13RB15 2		3303.2	51,22 2	51,002	220	57
37.3504	- 105.04847 4	495706.8 5	4133745.6 3	13RB15 3		3303.9	51,26 3	51,002	261	98
37.35028 6	- 105.04822 4	495728.9 8	4133732.9 8	13RB15 4		3306.1	51,28 3	51,002	281	118
37.35023	- 105.04796 9	495751.5 6	4133726.7 5	13RB15 5		3309.2	51,19 5	51,002	193	30
37.35016 3	- 105.04765 4	495779.4 6	4133719.3 1	13RB15 6		3310.2	51,14 9	51,002	147	-17
37.35016 5	- 105.04738 9	495802.9 3	4133719.5 2	13RB15 7		3311.1	51,12 6	51,002	124	-40
37.35018 2	- 105.04713 4	495825.5 1	4133721.3 9	13RB15 8		3313.3	51,07 7	51,002	75	-89
37.35017 6	- 105.04694 9	495841.9 0	4133720.7 2	13RB15 9		3314.2	51,09 6	51,002	94	-70
37.35013 8	- 105.04674 9	495859.6 1	4133716.4 9	13RB16 0		3316.2	51,06 4	51,002	62	-102
37.35011 2	- 105.04668 1	495865.6 3	4133713.6 0	13RB16 1		3316.4	50,93 9	51,002	-63	-227
37.35007 9	- 105.04662 1	495870.9 4	4133709.9 4	13RB16 2		3316.9	51,14 0	51,002	138	-26
37.35004 3	- 105.04658 8	495873.8 6	4133705.9 5	13RB16 3		3317.1	51,25 2	51,002	250	87
37.34989	- 105.04643 2	495887.6 7	4133688.9 6	13RB16 4		3317.6	51,19 9	51,002	197	34

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.34969 9	- 105.04621 6	495906.7 9	4133667.7 7	13RB16 5		3318.6	51,15 1	51,002	149	-15
37.34952 2	- 105.04604 2	495922.1 9	4133648.1 2	13RB16 6		3320.3	51,10 2	51,002	100	-64
37.34929 6	- 105.04599 5	495926.3 4	4133623.0 5	13RB16 7		3321.7	51,10 5	51,002	103	-61
37.34874 9	- 105.05795 1	494867.3 9	4133562.9 5	13RB16 8			51,01 4	51,011	3	-152
37.34878 2	- 105.05782 2	494878.8 2	4133566.6 0	13RB16 9			51,02 6	51,011	15	-140
37.34877 1	- 105.05761 4	494897.2 4	4133565.3 7	13RB17 0	364.46	3057.3	51,81 3	51,011	802	648
37.34874 1	- 105.05744 8	494911.9 4	4133562.0 3	13RB17 1	379.16	3064.1	51,56 9	51,011	558	404
37.34869	- 105.05728 5	494926.3 7	4133556.3 6	13RB17 2	393.59	3072.7	51,66 6	51,011	655	501
37.34862 9	- 105.05710 5	494942.3 1	4133549.5 9	13RB17 3	409.53	3079.9	51,26 6	51,011	255	101
37.34856 9	- 105.05692 8	494957.9 9	4133542.9 2	13RB17 4	425.21	3081.8	51,14 1	51,011	130	-25
37.34851 6	- 105.05681 4	494968.0 8	4133537.0 4	13RB17 5	435.30	3084.7	51,16 1	51,011	150	-5
37.34843 5	- 105.05657 5	494989.2 4	4133528.0 4	13RB17 6	456.46	3087.4	51,08 1	51,011	70	-85
37.34846 6	- 105.05665 8	494981.8 9	4133531.4 8	13RB17 7	449.11	3090	51,05 6	51,011	45	-110
37.34842 6	- 105.05656 2	494990.3 9	4133527.0 4	13RB17 8	457.61	3092.2	51,43 9	51,011	428	274
37.34841 2	- 105.05654	494992.3 4	4133525.4 8	13RB17 9	459.56	3096.5	51,27 5	51,011	264	110
37.34840 7	- 105.05646 8	494998.7 2	4133524.9 3	13RB18 0	465.94	3102.3	51,39 9	51,011	388	234
37.34831 5	- 105.05624 4	495018.5 5	4133514.7 1	13RB18 1	485.77	3106.1	51,20 3	51,011	192	38
37.34820 3	- 105.05609 3	495031.9 2	4133502.2 7	13RB18 2	499.14	3108	51,08 3	51,011	72	-83
37.34811 5	- 105.05595 2	495044.4 0	4133492.5 0	13RB18 3	511.62	3110.9	51,09 8	51,011	87	-68
37.34803	- 105.05587 2	495051.4 8	4133483.0 7	13RB18 4	518.70	3112.1	51,10 3	51,011	92	-63
37.34793	- 105.05570 9	495065.9 1	4133471.9 7	13RB18 5	533.13	3114.3	51,09 8	51,011	87	-68

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.34781 8	- 105.05558	495077.3 3	4133459.5 4	13RB18 6	544.55	3115.7	51,16 1	51,011	150	-5
37.34770 1	- 105.05544 5	495089.2 8	4133446.5 5	13RB18 7	556.50	3118.1	51,08 4	51,011	73	-82
37.34763 1	- 105.05535	495097.6 9	4133438.7 8	13RB18 8	564.91	3119.1	51,15 4	51,011	143	-12
37.3476	- 105.05525 5	495106.1 0	4133435.3 3	13RB18 9	573.32	3120.8	51,20 1	51,011	190	36
37.34744 1	- 105.05513 5	495116.7 2	4133417.6 9	13RB19 0	583.94	3122	51,14 5	51,011	134	-21
37.34732 9	- 105.05500 7	495128.0 5	4133405.2 6	13RB19 1	595.27	3124.4	51,12 6	51,011	115	-40
37.34721 4	- 105.05493 2	495134.6 8	4133392.4 9	13RB19 2	601.90	3125.3	51,01 8	51,011	7	-148
37.34708 1	- 105.05488 5	495138.8 3	4133377.7 4	13RB19 3	606.05	3126.8	51,09 7	51,011	86	-69
37.34694 6	- 105.05481 8	495144.7 6	4133362.7 6	13RB19 4	611.98	3129	51,12 3	51,011	112	-43
37.34680 5	- 105.05473 7	495151.9 3	4133347.1 1	13RB19 5	619.15	3130.4	51,19 8	51,011	187	33
37.34676	- 105.05470 4	495154.8 5	4133342.1 2	13RB19 6	622.07	3131.4	51,10 8	51,011	97	-58
37.34661 3	- 105.05468 5	495156.5 2	4133325.8 1	13RB19 7	623.74	3132.8	51,09 8	51,011	87	-68
37.34644 3	- 105.05478 2	495147.9 2	4133306.9 5	13RB19 8	615.14	3134.2	51,04 9	51,011	38	-117
37.34631 9	- 105.05477 9	495148.1 7	4133293.1 9	13RB19 9	615.39	3135	51,06 4	51,011	53	-102
37.34623 9	- 105.05480 2	495146.1 3	4133284.3 2	13RB20 0		3135.9	51,06 2	51,011	51	-104
37.34607 3	- 105.05488 5	495138.7 7	4133265.9 1	13RB20 1		3135.7	51,07 4	51,011	63	-92
37.34596 4	-105.0549	495137.4 3	4133253.8 2	13RB20 2		3137.1	51,07 6	51,011	65	-90
37.34582 7	- 105.05495 8	495132.2 9	4133238.6 2	13RB20 3		3139.5	51,06 3	51,011	52	-103
37.34570 8	- 105.05499 1	495129.3 6	4133225.4 2	13RB20 4		3139.5	51,05 5	51,011	44	-111
37.34555 1	- 105.05503 2	495125.7 2	4133208.0 1	13RB20 5		3140	51,06 3	51,011	52	-103
37.3454	- 105.05506 1	495123.1 4	4133191.2 6	13RB20 6		3140.7	51,04 3	51,011	32	-123

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.34525	- 105.05508 1	495121.3 6	4133174.6 2	13RB20 7		3140	51,03 2	51,011	21	-134
37.34515 4	- 105.05507 5	495121.8 8	4133163.9 7	13RB20 8		3141	51,02 8	51,011	17	-138
37.34502 3	- 105.05507 1	495122.2 3	4133149.4 3	13RB20 9		3141.7	51,00 4	51,011	-7	-162
37.34486 2	- 105.05505 1	495123.9 9	4133131.5 7	13RB21 0		3142.7	51,01 1	51,011	0	-155
37.34492 2	- 105.05500 2	495128.3 3	4133138.2 2	13RB21 1		3142.7	51,01 8	51,011	7	-148
37.34471 1	- 105.05504 6	495124.4 2	4133114.8 2	13RB21 2		3142.7	51,22 9	51,011	218	64
37.34455 9	- 105.05499 3	495129.1 1	4133097.9 5	13RB21 3		3144.8	51,06 4	51,011	53	-102
37.34454 1	- 105.05500 8	495127.7 8	4133095.9 6	13RB21 4		3143.9	51,09 9	51,011	88	-67
37.34436 8	- 105.05500 1	495128.3 9	4133076.7 6	13RB21 5		3143.4	51,16 8	51,011	157	3
37.34425 6	- 105.05493 7	495134.0 5	4133064.3 3	13RB21 6		3145.1	51,17 0	51,011	159	5
37.34411 8	- 105.05488 1	495139.0 0	4133049.0 2	13RB21 7		3146.3	51,18 1	51,011	170	16
37.34395 2	- 105.05482 5	495143.9 5	4133030.6 0	13RB21 8		3147.5	51,09 3	51,011	82	-73
37.34383	- 105.05478 9	495147.1 3	4133017.0 7	13RB21 9		3147.2	51,08 1	51,011	70	-85
37.34368 3	- 105.05475	495150.5 7	4133000.7 6	13RB22 0		3147.7	51,07 4	51,011	63	-92
37.34357 4	- 105.05471 1	495154.0 2	4132988.6 6	13RB22 1		3147.9	51,07 5	51,011	64	-91
37.34344 1	- 105.05461 6	495162.4 3	4132973.9 0	13RB22 2		3146.5	51,05 6	51,011	45	-110
37.34332 8	- 105.05451 5	495171.3 7	4132961.3 6	13RB22 3		3146.7	51,09 9	51,011	88	-67
37.34319 1	- 105.05439 3	495182.1 6	4132946.1 6	13RB22 4		3147	51,10 0	51,011	89	-66
37.34311 7	- 105.05430 4	495190.0 4	4132937.9 4	13RB22 5		3147	51,04 7	51,011	36	-119
37.34295 7	- 105.05411 8	495206.5 1	4132920.1 8	13RB22 6		3147.5	51,04 9	51,011	38	-117
37.34274 8	- 105.05416 4	495202.4 2	4132897.0 0	13RB22 7		3147	51,05 7	51,011	46	-109

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.34263 6	- 105.05431 3	495189.2 1	4132884.5 8	13RB22 8		3147.7	51,04 3	51,011	32	-123
37.34248 3	- 105.05450 9	495171.8 4	4132867.6 2	13RB22 9		3147.2	51,09 9	51,011	88	-67
37.34236 4	- 105.05465 5	495158.9 0	4132854.4 2	13RB23 0		3146.7	51,05 2	51,011	41	-114
37.34227 3	- 105.05477 4	495148.3 6	4132844.3 3	13RB23 1		3146.3	51,07 0	51,011	59	-96
37.34216 6	- 105.05488 1	495138.8 7	4132832.4 7	13RB23 2		3146.3	51,04 4	51,011	33	-122
37.34205 3	- 105.05496 7	495131.2 5	4132819.9 4	13RB23 3		3146	51,05 7	51,011	46	-109
37.34192 3	- 105.05510 9	495118.6 6	4132805.5 2	13RB23 4		3145.5	51,04 2	51,011	31	-124
37.34182	- 105.05519 6	495110.9 5	4132794.1 0	13RB23 5		3145.3	51,05 2	51,011	41	-114
37.34168 7	- 105.05531 5	495100.4 0	4132779.3 5	13RB23 6		3145.1	51,05 0	51,011	39	-116
37.34154 9	- 105.05536 6	495095.8 7	4132764.0 4	13RB23 7		3144.1	51,04 1	51,011	30	-125
37.34143 9	- 105.05548 2	495085.5 9	4132751.8 5	13RB23 8		3143.6	51,05 0	51,011	39	-116
37.34130 2	- 105.05563 4	495072.1 2	4132736.6 5	13RB23 9		3143.6	51,05 4	51,011	43	-112
37.34123	- 105.05570 9	495065.4 7	4132728.6 7	13RB24 0		3142.4	51,05 1	51,011	40	-115
37.34105 7	- 105.05590 9	495047.7 4	4132709.4 9	13RB24 1		3141.5	51,03 6	51,011	25	-130
37.34100 2	- 105.05607 1	495033.3 9	4132703.4 0	13RB24 2		3141.9	51,02 9	51,011	18	-137
37.34088 3	- 105.05618 8	495023.0 2	4132690.2 0	13RB24 3		3141.5	51,05 1	51,011	40	-115
37.34079 3	- 105.05629 8	495013.2 7	4132680.2 2	13RB24 4		3140.5	51,03 5	51,011	24	-131
37.34067	- 105.05643 9	495000.7 7	4132666.5 8	13RB24 5		3140	51,01 8	51,011	7	-148
37.34052 8	- 105.05654 9	494991.0 2	4132650.8 4	13RB24 6		3139.5	51,03 8	51,011	27	-128
37.34040 8	- 105.05664 6	494982.4 2	4132637.5 3	13RB24 7		3139.3	51,02 8	51,011	17	-138
37.34028 8	- 105.05672 6	494975.3 2	4132624.2 2	13RB24 8		3139	51,03 9	51,011	28	-127

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.34013	- 105.05680 4	494968.4 1	4132606.6 9	13RB24 9		3138.1	51,05 0	51,011	39	-116
37.34001 5	- 105.05688 9	494960.8 7	4132593.9 4	13RB25 0		3137.4	51,04 0	51,011	29	-126
37.33993 7	- 105.05693 6	494956.7 0	4132585.2 9	13RB25 1		3137.8	51,03 8	51,011	27	-128
37.33983 9	- 105.05715 2	494937.5 6	4132574.4 3	13RB25 2		3137.1	51,02 7	51,011	16	-139
37.33976 5	- 105.05729 3	494925.0 7	4132566.2 3	13RB25 3		3136.6	51,01 7	51,011	6	-149
37.33969 8	- 105.05747 1	494909.2 9	4132558.8 0	13RB25 4		3136.6	51,02 0	51,011	9	-146
37.33964 1	- 105.05761 5	494896.5 4	4132552.4 9	13RB25 5		3135.9	51,02 9	51,011	18	-137
37.33957 6	- 105.05776 8	494882.9 8	4132545.2 9	13RB25 6		3134.7	51,04 3	51,011	32	-123
37.33949	- 105.05793 2	494868.4 5	4132535.7 5	13RB25 7		3133.8	51,02 8	51,011	17	-138
37.33949 5	- 105.05786	494874.8 2	4132536.3 1	13RB25 8		3133.5	51,03 9	51,011	28	-127
37.33945 1	- 105.05801 4	494861.1 8	4132531.4 3	13RB25 9		3133	51,17 3	51,011	162	8
37.33938 6	- 105.05817 6	494846.8 2	4132524.2 3	13RB26 0		3133.8	51,02 3	51,011	12	-143
37.33933	- 105.05834 4	494831.9 4	4132518.0 3	13RB26 1		3133.8	51,04 2	51,011	31	-124
37.33926	- 105.05852 7	494815.7 3	4132510.2 7	13RB26 2		3133.3	51,04 1	51,011	30	-125
37.33919 4	- 105.05868 6	494801.6 4	4132502.9 6	13RB26 3		3132.8	51,03 3	51,011	22	-133
37.33917 3	- 105.05886 5	494785.7 8	4132500.6 4	13RB26 4		3131.8	51,02 8	51,011	17	-138
37.33908 5	- 105.05902 2	494771.8 7	4132490.8 8	13RB26 5		3131.8	51,01 2	51,011	1	-154
37.33905 5	- 105.05916	494759.6 4	4132487.5 6	13RB26 6		3130.9	51,03 5	51,011	24	-131
37.33899 1	- 105.05937	494741.0 3	4132480.4 7	13RB26 7		3130.4	51,03 0	51,011	19	-136
37.33889 9	- 105.05954 1	494725.8 8	4132470.2 8	13RB26 8		3129.9	51,02 6	51,011	15	-140
37.33881 5	- 105.05970 6	494711.2 6	4132460.9 7	13RB26 9		3129	51,01 2	51,011	1	-154

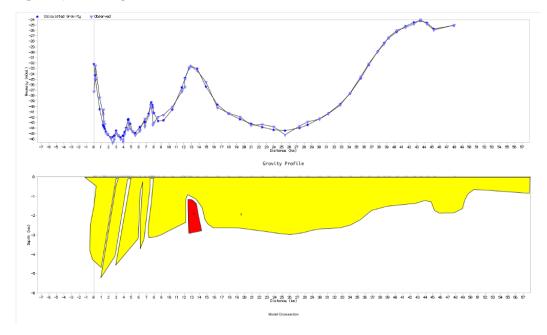
Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.33868 9	- 105.05976 9	494705.6 7	4132446.9 9	13RB27 0		3127.5	51,01 9	51,011	8	-147
37.33853 3	- 105.05976 5	494706.0 1	4132429.6 9	13RB27 1		3127	51,00 6	51,011	-5	-160
37.33839 9	- 105.05969 3	494712.3 8	4132414.8 2	13RB27 2		3126.8	51,09 0	51,011	79	-76
37.33829 9	- 105.05954 2	494725.7 5	4132403.7 1	13RB27 3		3127	51,05 3	51,011	42	-113
37.33821 3	- 105.05942 9	494735.7 5	4132394.1 7	13RB27 4		3126.3	51,05 2	51,011	41	-114
37.33812	- 105.05928 6	494748.4 1	4132383.8 4	13RB27 5		3125.8	51,04 1	51,011	30	-125
37.33804 1	- 105.05914 8	494760.6 3	4132375.0 7	13RB27 6		3124.9	51,04 1	51,011	30	-125
37.33791 7	- 105.05901 8	494772.1 4	4132361.3 1	13RB27 7		3123.9	51,04 2	51,011	31	-124
37.33785 8	- 105.05891 7	494781.0 8	4132354.7 5	13RB27 8		3122.9	51,02 1	51,011	10	-145
37.33790 9	- 105.05891 5	494781.2 6	4132360.4 1	13RB27 9		3122.5	51,02 9	51,011	18	-137
37.33782 7	- 105.05881 8	494789.8 5	4132351.3 1	13RB28 0		3122.5	50,82 4	51,011	-187	-342
37.33770 7	- 105.05869 1	494801.0 9	4132337.9 9	13RB28 1		3122.9	50,99 8	51,011	-13	-168
37.33761 6	- 105.05854	494814.4 6	4132327.8 9	13RB28 2		3122.5	50,99 7	51,011	-14	-169
37.33768 3	- 105.05858 4	494810.5 7	4132335.3 2	13RB28 3		3122	51,01 0	51,011	-1	-156
37.33761 1	- 105.05848 3	494819.5 1	4132327.3 3	13RB28 4		3121.7	51,25 8	51,011	247	93
37.33750 7	- 105.05835 6	494830.7 5	4132315.7 8	13RB28 5		3121.7	50,95 8	51,011	-53	-208
37.33739 5	- 105.05821 4	494843.3 2	4132303.3 5	13RB28 6		3121.3	51,34 2	51,011	331	177
37.33730 8	- 105.05810 6	494852.8 8	4132293.6 9	13RB28 7		3119.8	51,07 0	51,011	59	-96
37.33718 6	- 105.05799	494863.1 5	4132280.1 5	13RB28 8		3119.1	51,02 4	51,011	13	-142
37.33708 9	- 105.05786 3	494874.3 9	4132269.3 8	13RB28 9		3117.9	51,03 1	51,011	20	-135
37.33698 1	- 105.05777 8	494881.9 2	4132257.4 0	13RB29 0		3116.7	51,02 5	51,011	14	-141

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.33684 2	- 105.05767 4	494891.1 2	4132241.9 7	13RB29 1		3117.2	51,02 7	51,011	16	-139
37.33677 3	- 105.05760 7	494897.0 5	4132234.3 1	13RB29 2		3116.5	51,02 2	51,011	11	-144
37.33659 3	- 105.05746 5	494909.6 2	4132214.3 4	13RB29 3		3115.5	51,00 3	51,011	-8	-163
37.33644 6	- 105.05737 5	494917.5 8	4132198.0 2	13RB29 4		3114.3	51,02 4	51,011	13	-142
37.33630 6	- 105.05728 3	494925.7 2	4132182.4 9	13RB29 5		3113.6	50,98 3	51,011	-28	-183
37.33616	- 105.05715 4	494937.1 4	4132166.2 8	13RB29 6		3112.6	51,02 1	51,011	10	-145
37.33606 1	- 105.05705 4	494945.9 9	4132155.3 0	13RB29 7		3112.1	51,01 2	51,011	1	-154
37.33594 7	- 105.05696 9	494953.5 1	4132142.6 4	13RB29 8		3111.4	51,02 7	51,011	16	-139
37.33579 3	- 105.05689 1	494960.4 1	4132125.5 5	13RB29 9		3110	51,00 9	51,011	-2	-157
37.33566 1	- 105.05674 1	494973.6 9	4132110.9 0	13RB30 0		3109.5	51,01 0	51,011	-1	-156
37.33556	- 105.05668 8	494978.3 8	4132099.6 9	13RB30 1		3108.8	50,99 6	51,011	-15	-170
37.33539 9	- 105.05672 1	494975.4 4	4132081.8 4	13RB30 2		3107.1	51,00 1	51,011	-10	-165
37.33542 4	- 105.05673 6	494974.1 1	4132084.6 1	13RB30 3		3106.6	50,95 6	51,011	-55	-210
37.33537 7	- 105.05676 5	494971.5 4	4132079.4 0	13RB30 4		3105.9	50,91 5	51,011	-96	-251
37.33528 5	- 105.05682 4	494966.3 1	4132069.1 9	13RB30 5		3105.9	50,76 7	51,011	-244	-399
37.33522 5	- 105.05697 6	494952.8 4	4132062.5 5	13RB30 6		3104.9	50,63 9	51,011	-372	-527
37.33520 7	- 105.05710 1	494941.7 7	4132060.5 6	13RB30 7		3106.1	50,65 9	51,011	-352	-507
37.33522 6	- 105.05717 3	494935.3 9	4132062.6 7	13RB30 8		3105.6	50,70 4	51,011	-307	-462
37.33518 3	- 105.05725 1	494928.4 8	4132057.9 0	13RB30 9		3105.6	50,82 4	51,011	-187	-342
37.33517 9	- 105.05736	494918.8 2	4132057.4 6	13RB31 0		3104.4	50,81 6	51,011	-195	-350
37.33521 9	- 105.05744	494911.7 4	4132061.9 0	13RB31 1		3104.7	50,80 0	51,011	-211	-366

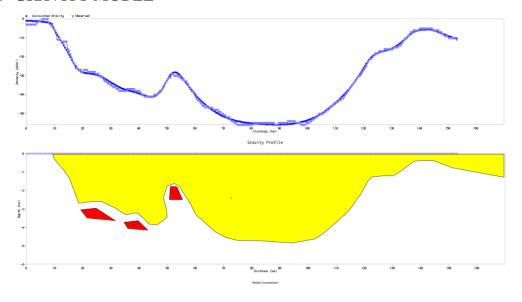
Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.33520 7	- 105.05753 2	494903.5 9	4132060.5 8	13RB31 2		3103.5	50,90 6	51,011	-105	-260
37.33525 8	- 105.05764 9	494893.2 3	4132066.2 4	13RB31 3		3103.5	50,91 8	51,011	-93	-248
37.33525 8	- 105.05772 2	494886.7 6	4132066.2 5	13RB31 4		3103.2	50,92 8	51,011	-83	-238
37.33522 5	- 105.05786 7	494873.9 1	4132062.5 9	13RB31 5		3102	50,96 1	51,011	-50	-205
37.33520 9	- 105.05793 3	494868.0 7	4132060.8 2	13RB31 6		3101.3	50,98 2	51,011	-29	-184
37.33515 2	- 105.05798 4	494863.5 4	4132054.5 0	13RB31 7		3101.1	50,96 2	51,011	-49	-204
37.33509 4	- 105.05805 4	494857.3 4	4132048.0 7	13RB31 8		3100.6	50,95 3	51,011	-58	-213
37.33501 7	- 105.05812 7	494850.8 7	4132039.5 3	13RB31 9		3100.1	50,97 6	51,011	-35	-190
37.33493 7	- 105.05815	494848.8 2	4132030.6 6	13RB32 0		3099.2	50,97 2	51,011	-39	-194
37.33489 6	- 105.05821 7	494842.8 9	4132026.1 1	13RB32 1		3099.4	50,96 8	51,011	-43	-198
37.33485 6	- 105.05824 8	494840.1 4	4132021.6 8	13RB32 2		3098.9	50,95 6	51,011	-55	-210
37.33476	- 105.05827 3	494837.9 2	4132011.0 3	13RB32 3		3099.2	50,93 1	51,011	-80	-235
37.33466 4	- 105.05832	494833.7 5	4132000.3 8	13RB32 4		3098.4	50,88 0	51,011	-131	-286
37.33458 3	- 105.05833 1	494832.7 7	4131991.4 0	13RB32 5		3098.9	50,81 0	51,011	-201	-356
37.33460 4	- 105.05830 9	494834.7 2	4131993.7 2	13RB32 6		3098.2	50,99 3	51,011	-18	-173
37.33455 2	- 105.05835 1	494830.9 9	4131987.9 6	13RB32 7		3098.2	51,65 4	51,011	643	489
37.33448 7	- 105.05837 5	494828.8 6	4131980.7 5	13RB32 8		3098.2	51,11 8	51,011	107	-48
37.33444 3	- 105.05839 8	494826.8 2	4131975.8 7	13RB32 9		3097.5	51,95 9	51,011	948	794
37.33437	- 105.05838 3	494828.1 5	4131967.7 7	13RB33 0		3097.5	51,36 3	51,011	352	198
37.33426 4	105.05838	494828.4 0	4131956.0 1	13RB33 1		3097	51,12 9	51,011	118	-37
37.33413	- 105.05839 9	494826.7 1	4131941.1 4	13RB33 2		3096.5	51,09 2	51,011	81	-74

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.33397	- 105.05838	494828.3 8	4131923.3 9	13RB33 3		3095.5	51,09 3	51,011	82	-73
37.33369 7	- 105.05829 7	494835.7 2	4131893.1 0	13RB33 4		3094.8	51,06 7	51,011	56	-99
37.33354 8	- 105.05823 6	494841.1 1	4131876.5 7	13RB33 5		3093.1	51,05 0	51,011	39	-116
37.34884 5	- 105.05827 2	494838.9 7	4133573.6 1	13RB33 6		3091.7	51,03 0	51,011	19	-136
37.34872 1	- 105.05910 8	494764.9 2	4133559.9 0	13RB33 7		3089.8	51,03 3	51,011	22	-133
37.34898 6	- 105.06161 5	494542.9 0	4133589.4 4	13RB35 1			51,01 7	51,017	0	-149
37.34945 6	- 105.05988 9	494695.8 0	4133641.4 9	13RB35 2						
37.35006	- 105.05905 2	494769.9 7	4133708.4 5	13RB35 3			51,00 5	51,017	-12	-161
37.35041 5	- 105.05117	495468.0 7	4133747.4 2	13RB35 4			50,96 2	51,017	-55	-204
37.35070 9	- 105.04957	495609.8 0	4133779.9 7	13RB35 5			50,96 2	51,017	-55	-204
37.35010 6	- 105.04663 3	495869.8 8	4133712.9 4	13RB35 6			50,95 4	51,017	-63	-212
37.33530 9	- 105.05684 2	494964.7 2	4132071.8 6	13RB35 7			50,96 8	51,017	-49	-198
37.33504	- 105.05808 3	494854.7 7	4132042.0 8	13RB35 8			50,94 4	51,017	-73	-222
37.33461 8	- 105.05835	494831.0 9	4131995.2 8	13RB35 9			50,92 4	51,017	-93	-242
37.32723 3	- 105.07086 1	493722.1 9	4131176.7 5	13RB36 0			50,88 3	51,017	-134	-283
37.42956 9	- 105.04487 7	496029.6 0	4142528.5 3	13RB36 1			50,87 8	51,017	-139	-288
37.42964 6	- 105.04483 8	496033.0 5	4142537.0 7	13RB36 2			50,91 0	51,017	-107	-256
37.42973 5	- 105.04481 2	496035.3 6	4142546.9 5	13RB36 3			50,89 9	51,017	-118	-267
37.42977 5	- 105.04478 4	496037.8 3	4142551.3 8	13RB36 4			50,91 5	51,017	-102	-251
37.42987 1	- 105.04473 5	496042.1 7	4142562.0 3	13RB36 5			50,85 6	51,017	-161	-310
				13RB36 6			50,85 2	51,017	-165	-314
				13RB36 7			50,92 8	51,017	-89	-238
				13RB36 8			50,89 2	51,017	-125	-274

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distance East from RB51	Altitude	Total Field Value	Base Station Value	Corrected Total Field	Anomaly
				13RB369			50,930	51,017	-87	-236
				13RB370			50,757	51,017	-260	-409
				13RB371			50,982	51,017	-35	-184
				13RB372			50,939	51,017	-78	-227
				13RB373			50,997	51,017	-20	-169
				13RB374			50,920	51,017	-97	-246
				13RB375			50,906	51,017	-111	-260
				13RB376			50,947	51,017	-70	-219
				13RB377			51,007	51,017	-10	-159
				13RB378			50,893	51,017	-124	-273
				13RB379			50,853	51,017	-164	-313
				13RB380			50,978	51,017	-39	-188
				13RB381			50,959	51,017	-58	-207
				13RB382			51,018	51,017	1	-148
				13RB383			51,013	51,017	-4	-153
				13RB384			51,015	51,017	-2	-151
				13RB385			51,060	51,017	43	-106
				13RB386			51,031	51,017	14	-135
				13RB387			51,100	51,017	83	-66
				13RB388			51,061	51,017	44	-105
				13RB389			51,036	51,017	19	-130
				13RB390			51,025	51,017	8	-141
				13RB392						
				13RB393			50,995	51,017	-22	-171
				13RB394			50,915	51,017	-102	-251
				13RB395			51,001	51,017	-16	-165
				13RB396			50,703	51,017	-314	-463
				13RB397			51,052	51,017	35	-114
				13RB398			51,002	51,017	-15	-164
				13RB399			51,206	51,017	189	41
				13RB400			51,139	51,017	122	-27
				13RB401			51,200	51,017	183	35
				13RB402			51,143	51,017	126	-23
				13RB403			51,206	51,017	189	41
				13RB404			51,110	51,017	93	-56
				13RB405			51,164	51,017	147	-2


Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.33996 9	- 104.99804 1	500173.5 3	4132587.3 2	13RB40 6			51,18 0	51,017	163	15
37.33995 5	- 104.99812 2	500166.3 5	4132585.7 7	13RB40 7			51,17 8	51,017	161	13
37.33993	- 104.99811 7	500166.7 9	4132583.0 0	13RB40 8			51,17 9	51,017	162	14
37.33997 3	- 104.99817 5	500161.6 6	4132587.7 7	13RB40 9			51,17 1	51,017	154	6
37.33998 3	- 104.99820 5	500159.0 0	4132588.8 8	13RB41 0			51,18 5	51,017	168	20
37.34000 9	- 104.99828 5	500151.9 1	4132591.7 6	13RB41 1			51,18 8	51,017	171	23
37.34000 7	- 104.99833 8	500147.2 2	4132591.5 4	13RB41 2			51,18 3	51,017	166	18
37.34000 5	- 104.99840 3	500141.4 6	4132591.3 2	13RB41 3			51,16 3	51,017	146	-3
37.34000 8	- 104.99844 1	500138.0 9	4132591.6 5	13RB41 4			51,11 2	51,017	95	-54
37.34002	- 104.99846 2	500136.2 3	4132592.9 8	13RB41 5			51,21 6	51,017	199	51
37.33999 7	- 104.99847 4	500135.1 7	4132590.4 3	13RB41 6			51,17 7	51,017	160	12
37.34001 1	- 104.99853 7	500129.5 9	4132591.9 8	13RB41 7			51,17 6	51,017	159	11
37.33998 9	- 104.99860 9	500123.2 1	4132589.5 4	13RB41 8			51,05 5	51,017	38	-111
37.34002 2	- 104.99867 4	500117.4 5	4132593.2 0	13RB41 9			51,16 4	51,017	147	-2
37.34004 6	- 104.99871 1	500114.1 8	4132595.8 6	13RB42 0			51,12 0	51,017	103	-46
37.34003 8	- 104.99875 8	500110.0 1	4132594.9 8	13RB42 1			51,13 3	51,017	116	-33
37.34001 3	- 104.99881 1	500105.3 2	4132592.2 0	13RB42 2			51,16 0	51,017	143	-6
37.34003 2	- 104.99881 9	500104.6 1	4132594.3 1	13RB42 3			51,17 7	51,017	160	12
37.34002 8	- 104.99890 9	500096.6 4	4132593.8 7	13RB42 4			51,19 4	51,017	177	29
37.34002 3	- 104.99893 9	500093.9 8	4132593.3 1	13RB42 5			51,21 4	51,017	197	49

Latitude	Longitude	UTM easting	UTM Northing	Stations	Distanc e East from RB51	Altitud e	Total Field Value	Base Statio n Value	Correcte d Total Field	Anomal y
37.34003 1	- 104.99900 9	500087.7 8	4132594.2 0	13RB42 7			51,19 8	51,017	181	33
37.34004	- 104.99907 1	500082.2 9	4132595.2 0	13RB42 8			51,20 1	51,017	184	36
37.34005 6	- 104.99911 4	500078.4 8	4132596.9 7	13RB42 9			51,18 8	51,017	171	23
37.34008 8	- 104.99921 8	500069.2 7	4132600.5 2	13RB43 0			51,19 2	51,017	175	27
				13RB43 1			51,19 8	51,017	181	33
				13RB43 2			51,10 5	51,017	88	-61


APPENDIX D

ACTUAL GRAVITY MODELS

A-A' GRAVITY MODEL

B-B' GRAVITY MODEL

APPENDIX E

GRAVMAG GRAVITY MODELS SAVE FILES

A-A' GRAVITY CROSS-SECTION

LeftEdge,-7508.189

RightEdge,58022.83

Bottom,6000

ProfileAzimuth,0

Latitude,36

Body,1,-0.4,0.001,71,0.0001,0,0.9680399

X,-1213.963,Z,-17.48852

X,57921.31,Z,-17.48852

X,57870.55,Z,-293.9082

X,57819.79,Z,-846.7475

X,52185.44,Z,-688.7934

X,50459.61,Z,-649.3049

X,49647.45,Z,-886.2361

X,49241.37,Z,-1202.144

X,48936.81,Z,-1636.518

X,47820.09,Z,-1853.705

X,45891.22,Z,-1873.449

X,45231.34,Z,-1735.239

X,44774.5,Z,-1281.121

X,43911.58,Z,-1221.889

- X,42744.1,Z,-1360.098
- X,38886.35,Z,-1510.757
- X,36880.45,Z,-1730.336
- X,35383.92,Z,-2209.102
- X,34064.16,Z,-2494.774
- X,32744.4,Z,-2623.731
- X,31323.13,Z,-2663.22
- X,30054.13,Z,-2682.964
- X,28937.41,Z,-2761.941
- X,27769.94,Z,-2880.407
- X,26094.86,Z,-2987.449
- X,24521.3,Z,-2919.895
- X,22896.99,Z,-2821.174
- X,21272.67,Z,-2742.197
- X,19800.63,Z,-2663.22
- X,18734.67,Z,-2623.731
- X,17364.16,Z,-2623.731
- X,15841.36,Z,-2623.731
- X,15181.48,Z,-2446.033
- X,14775.4,Z,-2228.846
- X,14369.32,Z,-1577.285
- X,13557.17,Z,-1142.911
- X,12440.45,Z,-905.9803

- X,12186.65,Z,-1182.4
- X,12186.65,Z,-2347.311
- X,10054.73,Z,-2761.941
- X,8887.256,Z,-2998.872
- X,8125.857,Z,-3097.593
- X,7313.699,Z,-3137.082
- X,7212.179,Z,-2919.895
- X,7212.179,Z,-2603.987
- X,7618.258,Z,-1360.098
- X,7922.818,Z,-76.72131
- X,7465.979,Z,-76.72131
- X,7465.979,Z,-511.0951
- X,6653.821,Z,-3216.059
- X,6146.222,Z,-3709.666
- X,6196.982,Z,-2051.148
- X,6501.541,Z,-247.718
- X,6146.222,Z,-748.0262
- X,5892.422,Z,-3176.57
- X,2897.589,Z,-4558.669
- X,4927.984,Z,-76.72131
- X,4471.145,Z,-116.2098
- X,2897.589,Z,-3885.344
- X,2745.309,Z,-4124.295

X,917.9529,Z,-5210.23

X,2948.349,Z,-412.3738

X,3252.908,Z,-76.72131

X,2948.349,Z,-76.72131

X,968.7128,Z,-4677.134

X,-198.7647,Z,-4253.188

X,-554.084,Z,-3770.23

X,-464.6369,Z,-2428.527

X,4.274836,Z,-1513.98

X,308.8342,Z,-477.9475

X,-554.084,Z,-224.6951

Color,255,255,0

Body,4,0.1,0.001,6,0.0001,0,0.9680399

X,12491.21,Z,-1162.656

X,13049.57,Z,-1182.4

X,13607.93,Z,-1379.843

X,13912.48,Z,-2052.517

X,14318.56,Z,-2784.423

X,12592.73,Z,-2921.092

Color,255,0,0

B-B' GRAVITY CROSS-SECTION

LeftEdge,0

RightEdge,170000

Bottom,6000

ProfileAzimuth,0

Latitude,36

Body,1,-0.3,0.001,47,0.0001,0,0.9680399

X,9334.248,Z,-35.60831

X,169581.7,Z,-37.87104

X,169581.7,Z,-1282.018

X,151214.8,Z,-765.5786

X,144330.8,Z,-373.8872

X,139663.7,Z,-373.8872

X,137446.8,Z,-427.2997

X,133013,Z,-943.6202

X,130212.8,Z,-1210.682

X,127295.8,Z,-1192.878

X,122745.4,Z,-1264.095

X,121578.6,Z,-1406.528

X,118720,Z,-2172.107

X,114577.9,Z,-3080.119

X,106293.8,Z,-4219.585

X,102656.9,Z,-4613.122

X,94291.25,Z,-4833.858

X,89550.74,Z,-4793.724

X,82858.25,Z,-4713.456

- X,74910.92,Z,-4693.389
- X,70867.54,Z,-4532.854
- X,67103.02,Z,-4231.851
- X,63617.35,Z,-3770.313
- X,59992.25,Z,-3268.64
- X,58179.71,Z,-2706.767
- X,56227.73,Z,-2265.296
- X,54415.18,Z,-1783.69
- X,52540.67,Z,-1623.155
- X,49953.52,Z,-1763.624
- X,48698.68,Z,-2385.697
- X,49814.1,Z,-3088.038
- X,49953.52,Z,-3449.242
- X,46467.85,Z,-3870.647
- X,43400.46,Z,-3810.446
- X,41770.76,Z,-3525.223
- X,39320.52,Z,-3204.748
- X,35313.71,Z,-3308.774
- X,33253.26,Z,-3115.727
- X,31269.73,Z,-2919.881
- X,26485.93,Z,-2581.602
- X,22985.59,Z,-2599.407
- X,18551.82,Z,-2688.427

X,17035,Z,-2065.282

X,15168.15,Z,-1299.703

X,13284.28,Z,-900.7473

X,11084.42,Z,-516.3205

X,9800.961,Z,-267.0623

Color,255,255,0

Body,4,0.2,0.001,4,0.0001,0,0.9680399

X,19251.89,Z,-3044.51

X,24735.76,Z,-2955.49

X,31619.77,Z,-3632.047

X,21585.45,Z,-3489.614

Color,255,0,0

Body, 5, 0.1, 0.001, 4, 0.0001, 0, 0.9680399

X,51068.94,Z,-1785.953

X,53439.19,Z,-1806.02

X,55391.17,Z,-2488.294

X,50790.09,Z,-2488.294

Color,255,0,0

Body, 6, 0.1, 0.001, 4, 0.0001, 0, 0.9680399

X,34653.4,Z,-3721.068

X,39670.56,Z,-3632.047

X,43170.9,Z,-4148.368

X,36053.53,Z,-4059.347

REFERENCES

AMEC Environment & Infrastructure, INC., 2012, Freeman 3-24 Well Nontributary determination Huerfano County, Colorado Raton Basin, AMEC Project Number: DE1016003A.

Baltz, E. H., 1965, Stratigraphy and history of Raton Basin and notes on San Luis basin, Colorado-New Mexico: Am. Assoc. Petroleum Geologists Bull., v. 49, p. 2041-2075.

Close, J.C., Dutcher, R.R., 1990, Update on Coalbed methane potential, Raton Basin, Colorado and New Mexico. In Proceedings: 1990 SPE Annual Technical Conference and Exhibition.

Cooper, J.R., 2006, Igneous Intrusions and Thermal Evolution in the Raton Basin, CO-NM: Contact Metamorphism and Coal Bed Methane Generation, University of Missouri-Columbia, Masters Dissertation, p. 5-10.

Flores, R.M.,1987, Sedimentology of Upper Cretaceous and Tertiary siliciclastics and coals in the Raton Basin, New Mexico and Colorado: New Mexico Geological Society Guidebook, 38th Field Conference, Northeastern New Mexico, p. 255-264.

Flores, R.M., Bader, L. R., 1999, A summary of Tertiary coal resources of the Raton Basin, Colorado and New Mexico. In USGS Professional Paper 1625-A.

Hemborg, H. T., 1998, Spanish Peak Field, Las Animas County, Colorado: Geologic setting and early development of a coalbed methane reservoir in the Central Raton Basin. Colorado Geological Survey, Dept. of Natural Resources, Denver, CO, Resource Series 33, 34 p.

Highley, D.K., 2007, Petroleum Systems and Assessment of Undiscovered Oil and Gas in the Raton Basin–Sierra Grande Uplift Province, Colorado and New Mexico, U.S. Geological Survey, Reston, Virginia, U.S. Geological Survey Digital Data Series DDS–69–N, p. 3-33.

Hildenbrand, T.G., Briesacher, A., Flanagan, G., Hinze, W.J., Hittelman, A.M., Keller, G.R., Kucks, R.P., Plouff, D., Roest, W., Seeley, J., Smith, D.A., and Webring, M., 2002, Rationale and Operational Plan to Upgrade the U.S. Gravity Database: U.S. Geological Survey OpenFile Report 02–463, 12 p.

Hinze, W.J., 2003, Bouguer reduction density, why 2.67?: Geophysics, v. 68, p. 1559–1560, doi: 10.1190/1.1620629.

Hoffman, G.K., and Brister B.S., 2003, New Mexico's Raton Basin coalbed methane play, New Mexico Bureau of Geology and Mineral Resources Bulletin, Volume 25, Number 4.

Holom, D.I., and Oldow, J.S., 2007, Gravity reduction spreadsheet to calculate the Bouguer anomaly using standardized methods and constants, Geosphere: v.3; no.2; p.86-90.

Johnson, R.B., 1961, Coal resources of the Trinidad coal field in Huerfano and Las Animas counties, Colorado, B 1112-E, p. 129-180, illus., tables, geol. Map.

Johnson, R.B., 1986, Geology of the igneous rocks of the Spanish Peaks region Colorado. Geological Survey Professional Paper 594-G.

Johnson, R.C., and Finn, T.M., 2001, Potential for a Basin-Centered Gas Accumulation in the Raton Basin, Colorado and New Mexico, U.S. Geological Survey Bulletin 2184-B, p. 5-9.

Lee, P.M., 2005, Spatial, temporal and petrogenic relationships of basaltic and lamprophyric dikes and sills of the Raton Basin, southern Colorado and northern New Mexico. University of Missouri-Columbia, Masters Thesis, 160 p.

Lindsey D.A., 2010, The Geologic Story of Colorado's Sangre de Cristo Range, U.S Geologic Survey Circular 1349.

Mariita, N.O., 2007, The Magnetic Method, Presented on short course II on surface exploration fo geolthermal resources.

Miggins, D.P., 2002, Chronological, Geochemical and Isotopic Framework of Igneous Rocks within the Raton Basin and Adjacent Rio Grande Rift, South- Central Colorado and Northern New Mexico. University of Colorado, Boulder, Masters Thesis.

Penn, B.S., 1995, An investigation of the temporal and geochemical characteristics, and the petrogenetic origins of the Spanish Peaks intrusive rocks of south-central Colorado: Co. School of Mines, Ph.D. Thesis

Pillmore, C. L., 1969, Geology and coal deposits of the Raton coal field, Colfax Co., New Mexico: The Mountain Geologist, v. 6, p. 125-142.

Pillmore, C.L., and Flores, R.M., 1987, Stratigraphy and depositional environments of the Cretaceous-Tertiary boundary clay and associated rocks, Raton Basin, New Mexico and Colorado, *in* Fassett, J.E., and Rigby, J.K., Jr., eds., The Cretaceous-Tertiary Boundary in the San Juan and Raton Basins: New Mexico and Colorado: Geological Society of America, Special Paper 209, p. 111-130.

Speer, W.R., 1976, Oil and Gas Exploration in the Raton Basin, New Mexico Geol. Soc. Guidebook, 27th Field Conf., Vermejo Park, 1976, p. 217-226.

Stevens, S.H., Lombardi, T.E., Kelso, B.S., and Coates, J.M., 1992, A geologic assessment of natural gas from coal seams in the Raton and Vermejo Formations, Raton Basin. GRI Topical Report 92/0345.

Tremain, C.M., 1980, The Coal Bed Methane Potential of the Raton Mesa Coal Region, Raton Basin, Colorado. Colorado Geological Survey Open-File Report 80-4.

Tweto,O., 1975, Laramide (Late Cretaceous–early Tertiary) orogeny in the southern Rocky Mountains, in Curtis, B., ed., Cenozoic Geology of the Southern Rocky Mountains: Geologic Society of America Memoir 144, p. 1–44.

Tweto, O., 1979, Geologic map of Colorado: US. Geological Survey in corporation with the Colorado Geological Survey, scale 1:500,000.

Woodward, L.A., 1976, Structural framework of the southern Raton Basin New Mexico, New Mexico Geologic Society Guidebook, 27th Field Conference.

Woodward, L.A., 1987, Tectonic framework of northeastern New Mexico and adjacent parts of Colorado, Oklahoma and Texas. New Mexico Geological Society Guidebook, 38th Field Conference.

BIOGRAPHICAL SKETCH

Yusuf Pehlivan was born on the 11th of November, 1986, in Istanbul, Turkey. He received his Bachelor of Science degree in Geological Engineering from the Dumlupinar University in the spring of 2010. After graduation, he was awarded full financial support by Turkish Petroleum Corporation for graduate study in the USA. Then, he enrolled in a graduate program at the Florida State University, Department of Earth, Ocean, and Atmospheric Sciences in the fall of 2012. His major is Structural Geology. Yusuf's thesis, Gravity, Magnetic, and Geologic Constraints on the Raton Basin of Southern Colorado, is supervised by Dr. David W. Farris. Yusuf Pehlivan has presented his research as a poster presentation at the Geological Society of America 125th anniversary annual meeting in Denver, Colorado in October, 2013. After completing his Master's degree in Spring'15 semester, he will be employed as an expert geologist by the Turkish Petroleum Corporation.